[image: image5.png]

NanoTrader Indicator-API

[image: image1.png]
NanoTrader Indicator API

Document Version 2.2
www.fipertec.com
[image: image2.png]
Contents

31
Revisions

32
Introduction

43
Technology

44
Integrated Online-Shop and Licensing

45
Software Development Kit

46
Naming Conventions

47
Lifetime of a DLL

57.1
Making the DLL visible to NanoTrader

57.2
Loading and Initialization

57.3
Multiple Instances of a PlugIn

57.4
The NanoDllDetails-Structure

77.5
Calculation

77.6
Calculating Stops

77.7
Interpretation

87.7.1
Interpretation using the Built-In schemes

97.7.2
Interpretation computed by the PlugIn

97.8
Configuring the DLL

107.9
Shutdown

108
Plotting

109
Parameters

1110
Data Structures

1111
Debugging

1112
NanoDllContainer Tester

1213
Make yourself known!

1 Revisions
Document Version 1.9
· added possibility to plot colored bands
The member NanoDllSeries.isPlotted is still valid, but will be removed in the future. It is overlaid with NanoDllSeries.plotStatus that might hold one of the new constants: NANO_NO_PLOT, NANO_PLOT, NANO_BAND.
To create a filled band set for two plotted series the plotStatus to NANO_BAND. The fill colour can be adjusted with the standard visualization settings dialog within NanoTrader. The example DLL demonstrates this.

[image: image3.png]

The API is fully backward compatible with the previous version.
To use the new feature NanoTrader V2.0.0.53 or above is required.

Document Version 1.8
· added Parameter to GetDetails(char *language)
This allows to provide localized strings prior to the call of Initialize().
2 Introduction
The NanoTrader Indicator API allows third party developers to provide custom indicators as DLLs.
Each DLL implements exactly one indicator. This indicator can be used exactly as a standard built-in indicator of NanoTrader, i.e., it can plot data, emit sentiments or stop prices and it can be optimized. It can also work as a Tactic.
The API is targeted to programming professionals wanting to use specific libraries or specialized algorithms that go beyond the scope of NanoTrader-Express.
3 Technology
An indicator DLL needs to implement a specific interface as defined in the SDK. Each programming environment capable of creating standard Windows DLLs can be used as a programming environment.
4 Integrated Online-Shop and Licensing
Fipertec plans to create an Online-Shop allowing third-party developers to sell their products through a structured process including billing, licensing, and installation.
5 Software Development Kit
The archive “NanoTrader_Indicator_SDK.zip” contains two directories:
NanoDLL and NanoDllContainer.
The DLL interface to be implemented is specified in file NanoDLL/NanoDLL.h. It also contains an Visual C++ implementation of a NanoTrader-DLL as an example project.
NanoDllContainer is a small test program allowing to load a DLL and execute various functions.
When using Visual C++ double click the project file NanoDLL/NanoDLL.sln to have both projects open.
Note that you might download a free 90 day trial version of MS Visual Studio containing VC++ from the Microsoft website.
6 Naming Conventions
The filename of a DLL as well as the name of the indicator should obey the following naming conventions in order to allow an uncomplicated coexistence of DLLs provided by different developers.
A DLL should be named:
<company name><space><Indicator Name>.dll
where the company name could be an abbreviation of at least 5 characters.
The indicator will show up in the NanoTrader GUI as
<company name><space><Indicator Name>, e.g., in the “Add Indicator” dialog.
7 Lifetime of a DLL
The following information is meant as an overview. The file NanoDll.h as well as the demo project are heavily documented and contain the detailed information.
7.1 Making the DLL visible to NanoTrader
In order to make a DLL available to NanoTrader the DLL needs to be copied into the location
32-bit indicators:

<NanoTrader personal files directory>\PlugIns\Indicators
64-bit indicators:

<NanoTrader personal files directory>\PlugIns\Indicators64
Create the directory in case it does not yet exist.

7.2 Loading and Initialization
The API distinguishes between “loading” the DLL and “initializing” it. NanoTrader might load the DLL to obtain additional information, such as version number, author, description, etc. This might be done through the NanoTrader browser to present the available DLLs to the user. Loading does not automatically mean the DLL will be used, so do not perform any specific initialization procedures when the DllMain() function is called – other than populating the NanoDllDetails structure.
If a DLL is to be used by a NanoTrader study the DLL routine Initialize() will be called once prior to any other call.
7.3 Multiple Instances of a PlugIn
An indicator plugin can exist in multiple instances at the same time, e.g., the same plugin might be used as a filter and indicator within one study and/or for studies targeted to multiple symbols.
Therefore the interface distinguishes between two main data structures:
NanoDllDetails holds all static information shared by all instances, whereas NanoInstanceDetails holds data local to an instance. A new instance is created by calling Initialize(). This routine creates and populates a NanoInstanceDetails structure and returns a pointer to it. All API calls are provided this parameter. NanoInstanceDetails holds a void *data for holding all additional data required by an instance.
7.4 The NanoDllDetails-Structure
The DLL needs to populate a NanoDllDetails structure to provide descriptive information about the DLL to NanoTrader. It is complemented by NanoInstanceDetails holding the actual pointers to data series which need to be plotted as well as the description of parameters that show up in the NanoTrader user interface.
typedef struct
{
//General Information about the DLL
char
*version;

//Version number of this DLL - use Format
//Version.Subversion", e.g., "3.2"

char
*author;

char
*shortDescription;
//A short description; displayed in the
//DesignerBar and "Add Indicatro"-dialog.

char
*longDescriptionUrl;
//A URL pointing to a full description

char
*authorEmail;

//eg, "john@smith.com

char
*authorWeb;

//eg, "http://www.indicatorFactory.com"

char
*nanoGuid;

//Id as provided by Fipertec for online
//permissioning. Set to \0 if unused.

char
*tacticName;

//An abbreviated name of up to 9 chararaters to be
//displayed when used as a Tactic.

//Only meaningful in case the plguInType is
//NANO_PRICE_STOP;

//Usage

int
plugInType;

//One of NANO_SENTIMENTOR/BLOCKER/PRICE_STOP

bool
calculateAtEveryTick;
//Set to false for computing intensive indicators.

//Then they will be calculated only at the
//end of a period.

//When set to true as Stop can be recomputed with
//every tick, e.g., to implement

//an intraperiod trailing etc. Note though that
//these stops are _only_ active in

//LiveEvaluation or in TradeGuard mode. They are
//deactivated in standard backtesting mode.

//In that case they are not called at all by the
//NanoTrader framework.

//Parameters

int

nbParameters;

//Interpretation; only meaningful for plugInType NANO_SENTIMENTOR

int

interpretationType;
//Use a constant from NANO_INTERPRET_xxx

//Data required when using the built-in interpretation schemes.
//ip = InterPretation

int
ipSeries1type;
//Use a constant from NANO_SERIES_OWN, ...
//NANO_SERIES_LOW

int
ipSeries1index;//if NANO_SERIES_OWN, point to the series index in
//'plotSeries'; ignored otherwise

int
ipSeries2type;

int
ipSeries2index;

int
ipSeries3type;

int
ipSeries3index;

int
ipPara1index, ipPara2index;
//Parameters from inside the
//parameters' to be used by the built-in interpretation schemes
//Swing and TwoThresholds.

//Doubleclick action

bool
hasEditor;

//Is an editor to be started on
//doubleclicking the Plugin in

//the DesignerBar? Usually this is used to
//configure the interpretation.

//Plotting

int

nbSeriesToPlot;

bool
plotClose;
//Set to true if also the close price should be plotted.

bool
plotCandles;
//Set to true if also the candles should be plotted

bool
plotSignalsAtHiLo;
//Set to true if `plotCandles' is set to true and
//the signal drawings should be anchored at the //high/lows of the candles.

//As default the singals are anchored at the first
//series to be plotted.

int

nbFixedYscaleEntries;
//For oscizllators et al. you might
//explicitly define the yscale to be displayed.

float *fixedYscale;

//Set to NULL if unused.

//E.g. [0.0, 100.0, 25.0, 50.0, 75.0]

char *yScaleFormat;

//in printf format, e.g, "%.3f"; when set to

//NULL the format from the symbol is

//taken
} NanoDllDetails;
typedef struct
{
NanoDllSeries **plotSeries;
//Array of `NanoDllDetails.nbSeriesToPlot' series
//to be plotted by NanoTrader.

//The complete data is to be allocated and freed by
//the DLL.

NanoParameter *parameters;
/Array of size `NanoDllDetails.nbParameters' to
//be shown in the NanoTrader DesignerBar.

NanoEnvironment *nanoEnv;
//The NanoEnvironmnet this instance is targeted to.

void *data;

//Pointer to struct containing all locally required
//data per instance.
} NanoInstanceDetails;
7.5 Calculation
In case the DLL should act as a standard sentimentor or a blocker set NanoDllDetails.plugInType to NANO_SENTIMENTOR or NANO_BLOCKER respectively.
NanoTrader will call the function Calculate() with each incoming tick or when it is required due to some user interaction, e.g., changing parameters or the aggregation. During this call you will perform your calculations based on the updated data. The function will be provided pointers to the complete price data.
If the computation is so computing intense that an update with each tick would be inappropriate set the member calculateAtEveryTick of the NanoDllDetails to false. This way the function will only be called at the end of a period.
7.6 Calculating Stops
In case the DLL should compute price stops instead of sentiments set NanoDllDetails.plugInType to NANO_PRICE_STOP. In that case no data will be plotted by the framework. Instead, NanoTrader will display the trajectory of the stop prices given the stop is active.
The routine to be implemented for calculating stop prices is CalcStopPrice(). As opposed to Calculate() , CalcStopPrice() computes the stop only for the requested period. It is called by the framework starting with the entry period of a trade up to the final period of a trade.
If the stop price is to be recalculated with every incoming tick set calculateAtEveryTick to true. Note that in this case the stop is only evaluated in LiveEvaluation and TradeGuard mode, not in the standard backtesting. (The same restriction applies to built-in stops.)
7.7 Interpretation
PlugIns working as NANO_PRICE_STOP are not interpreted. However, the function Interpret() must be available in the DLL.
7.7.1 Interpretation using the Built-In schemes
Most often you want to rely on the built-in schemes as also used by NanoTrader-Express. This provides an easy way for you to implement the interpretation and the associated persistency as everything is taken care of automatically by NanoTrader. Also the user can use the standard dialogs.
To apply a built-in scheme set NanoDllDetails.interpretationType to one of NANO_INTERPRET_TWO_BANDS, NANO_INTERPRET_SWING, NANO_INTERPRET_TWO_THRESHOLDS or NANO_INTERPRET_TRIGGERLINE.
The data to be used by the built-in schemes needs to be set through the following variables of the NanoDllDetails struct:
ipSeries1type and ipSeries1index, ipSeries2type and ipSeries2index, ipSeries3type, ipSeries3index.
The ipSeriesXtype variable denotes the type of the series to be passed to the built-in scheme. Quite often this will be a series from the original price data, e.g., the closing prices. These prices can be easily referred to by setting the ipSeriesXtype to one of NANO_SERIES_OPEN, NANO_SERIES_CLOSE, NANO_SERIES_HIGH, NANO_SERIES_LOW.
In case you want to provide a series that has been computed by the DLL it is assumed (and actually required) that this series is also plotted – and hence the series is available in the plotSeries array.
Set the ipSeriesXtype to NANO_SERIES_OWN and the corresponding ipSeriesXindex to the index of the series in the plotSeries array.
Example for using the TwoBands-Scheme:
details.interpretationType = NANO_INTERPRET_TWO_BANDS;

details.ipSeries1type = NANO_SERIES_CLOSE;

details.ipSeries2type = NANO_SERIES_OWN;

details.ipSeries2index = 0;
details.ipSeries3type = NANO_SERIES_OWN;
details.ipSeries3index = 1;

The schemes Swing and TwoThresholds also require two exposed parameters. The indices of these parameters are to be set in the variables ipPara1index and ipPara2index.
The schemes require the following settings:

	NANO_INTERPRET_TWO_BANDS
	ipSeries1type/index = main curve
ipSeries2type/index = lower band
ipSeries3type/index = upper band

	NANO_INTERPRET_SWING
	ipSeries1type/index = main curve
ipPara1index = span left
ipPara2index = span right

	NANO_INTERPRET_TWO_THRESHOLDS
	ipSeries1type/index = main curve
ipPara1index = up threshold
ipPara2index = down threshold

	NANO_INTERPRET_TRIGGERLINE
	ipSeries1type/index = main curve
ipSeries2type/index = trigger line

7.7.2 Interpretation computed by the PlugIn
If you want the DLL itself to compute the interpretation set NanoDllDetails.interpretationType to NANO_INTERPRET_CALL_FUNCTION and implement the function Interpret().
At the end of a period (and after calling Calculate()), the function Interpret() is called. Within this function the sentiments of the indicator are to be written into a provided array. The sentiments usually rely on the data as computed in the Calculate() calls. If the indicator is used for plotting only then provide the value “50” (neutral) for each period of the sentiment array.
Make sure the sentiments are in the range [0.0, 100.0].
A NANO_BLOCKER always needs to implement the interpretation by itself. The sentiment per period needs to be one of the constants NANO_SENTI_PASS, NANO_SENTI_BLOCK, or NANO_SENTI_FLAT.
7.8 Configuring the DLL
The PlugIn can be configured in the standard way through the exposed parameters in NanoTrader’s DesignerBar.
In addition doubleclicking the PlugIn in the DesignerBar will call the routine OnEditConfiguration() given that the variable NanoDllDetails.hasEditor is set to true.
The exposed parameters are saved and restored automatically by NanoTrader. Additional settings that might have been made in OnEditConfiguration()need to be saved and restored by the DLL. The suggested way is to use the NanoTrader framework to do this, i.e., create a string holding the configuration settings and pass it to GetConfigurationSettings(). NanoTrader will save this information along with the complete study. When loading the study that information is provided to the PlugIn in the SetConfigSettings() routine.
The precise calling sequence is hence:
DllMain();
GetDetails();
Initialize();
if (config settings available)
 SetConfigSettings();
Calculate();
When closing a study the sequence is:
GetConfigSettings();
Shutdown();
Note: To make the PlugIn backward compatible to previous versions of itself it is wise to include the PlugIn version number in the configuration settings. This way a newer version of the PlugIn can easily work with an older configuration string without annoying the user.
Make sure not to use the pipe „|“ and newline characters in the configuration string!
7.9 Shutdown
When the DLL is not required any more by NanoTrader the function Shutdown() is called. At this point the DLL needs to release all required memory.
8 Plotting
The NanoDllDetails contains an array of pointers of data series to be plotted. Each series is specified with a name and a default color and width. These settings can be changed by the user through the standard mechanisms.
Frequently an indicator wants to plot the last price series. To do so, just set NanoDllDetails.plotClose to true.
If candles are to be plotted, e.g., if the indicator calculates bands around the periods, just set NanoDllDetails.plotCandle to true.
For oscillators et al. you might explicitly define the yscale to be displayed. To do so, set NanoDllDetails.nbFixedYscaleEntries to the number of entries of the y-scale. The values as such are made available in
NanoDllDetails.fixedYscale. By definition the first entry denotes the minimal y-scale value and the second the maximal y-scale value. All other values can be in any order. Hence a valid setting would be:
nbFixedYscaleEntries = 5 and
fixedYscale = { 0.0f, 100.0f, 25.0f, 50.0f, 75.0f }
To rely on NanoTrader’s automatic scaling set nbFixedYscaleEntries to zero and fixedYscale to NULL.
9 Parameters
Parameters may drive the functioning of the indicator. They are exposed in the NanoTrader DesignerBar for configuration by the user.
Each parameter has a name, min/max/hardMin/hardMax/default/actual value, precision, and step size.
The definition of a parameter cannot be changed during the lifetime of the PlugIn. Within the call to Initialize() populate the NanoDllDetails.parameters. NanoTrader will set the “actual” value as set by the user or by the optimizer.
Each parameter can vary in a specific domain. The min/max values denote a best-fit standard domain use as the default. The user though can vary these bounds, e.g, for ensuring the optimizer just picks values from an intended interval.
The hardMin/hardMax values are the bounds for the min/max values.
Example: Moving Average.
Min: 20
Max: 250
Hard Min: 1
Hard Max: 9999999
10 Data Structures
You will frequently need a data container that grows with new incoming data. Use the structure NanoDllSeries for this.
Make sure to reallocate the data structure when it becomes too small. There is a helper function ResizeSeries() that could be used in C/C++ projects. It is essential to let the structure grow in blocks so that the need for reallocating memory is minimized.
11 Debugging
In case of problems with the DLL NanoTrader will write specific information into the logfile located in <Installation Directory>/Logs/sysLog_date.log which is a plain text file.
12 NanoDllContainer Tester
The SDK contains a simple program that can be used to test and debug the communication with the DLL outside of the NanoTrader application.
The testing project is called NanoDllContainer and is provided in source code. Note that NanoTrader and therefore NanoDllContainer are Unicode applications!
NanoDllContainer allows you to load a DLL from a path, and call it with some test data:
[image: image4.png]
By clicking “Test Full DLL Lifecycle” most DLL functions are called in the appropriate sequence from LoadDll() to Shutdown(). To test the individual steps use the dedicated buttons.
13 Make yourself known!
Please let us know if you created PlugIns. Fipertec is working on a mechanism to share and also license PlugIns from a central point.

NanoTrader Indicator-API
12

[image: image5.png]