

NanoTrader-

Express

Language Reference

Document Version 3.4.1

www.fipertec.com

http://www.fipertec.com/

 NanoTrader-Express

 NanoTrader-Express 2

Contents

1 Introduction ... 4

2 Express – Execute Only .. 4

3 Structure of an Express-Program .. 5

4 A Sentimentor Example... 5

5 Adding an Express-Sentimentor to a Study ... 7

6 Working with the Express Editor ... 10

6.1 Open the Express Editor .. 10

6.2 Editor Toolbar and Context Menu .. 10

6.3 More Editor Functionality ... 17

6.3.1 Highlighting identical words .. 17

6.3.2 Showing Function Signatures ... 17

6.3.3 Block Indentation .. 17

6.4 Keyboard Shortcuts for Editing and Debugging 18

6.5 Executing an Express Program .. 18

6.6 Understanding how Express Programs are Saved 18

7 Express Language Elements .. 20

7.1 Types ... 20

7.2 Reserved Words .. 20

7.3 Expressions ... 21

7.3.1 Numerical Expressions ... 21

7.3.2 Relational Expressions ... 21

7.3.3 Logical Expressions .. 22

7.3.4 String Expressions .. 22

7.4 Variable Declarations ... 22

7.5 Input Variables ... 24

7.6 Accessing Variables and Series data ... 26

7.7 Working with Arrays ... 26

7.8 Assignments .. 27

7.9 Assigning Sentiments ... 27

7.10 Predefined Series... 27

7.11 Importing a Series from another Sentimentor 28

7.12 Importing an Array from another Sentimentor 30

 NanoTrader-Express

 NanoTrader-Express 3

7.13 Importing Price Data from another Symbol .. 32

7.14 Date and Time constants ... 32

7.15 Statements ... 33

7.16 Control Structures .. 33

7.16.1 if then .. 33

7.16.2 If then else .. 33

7.16.3 While Loop .. 34

7.16.4 For Loop ... 34

7.17 The Need for Speed ... 35

7.18 Interpretation – Computing the Sentiments .. 36

7.18.1 Interpretation Using the Built-in Schemes 36

7.18.2 Programming the Interpretation Explicitly 37

7.19 Plotting ... 38

7.20 More on Colors .. 39

7.20.1 Dual Colors ... 39

7.20.2 Syntax of a Dual Color Specification ... 40

7.20.3 Logical Color Names ... 41

7.20.4 Specifying the Opacity for fill colors, Highlight(), and Annotate() 41

8 A Blocker Example .. 42

9 A Stop Example .. 44

10 A Stop/Tactic Example with intraperiod updates 45

11 Debugging Express Code .. 47

11.1 Setting Breakpoints .. 47

11.1.1 In the Editor... 47

11.1.2 Breakpoints by Function Calls... 48

11.2 Inspecting Variables when a Breakpoint was hit 49

11.3 Highlighting of Changed Variables ... 50

11.4 Continuing Code Execution from a Breakpoint 50

11.5 Some Tips & Tricks for Debugging... 51

11.6 Using DDE to simulate specific data .. 52

12 Encrypting Express-Sentimentors ... 52

13 Built-In Functions and Procedures ... 53

 NanoTrader-Express

 NanoTrader-Express 4

1 Introduction

Welcome to NanoTrader-Express!

NanoTrader-Express allows to program sentimentors, stops and filters that can
be used in exactly the same way as the built-in sentimentors, i.e., they can be
combined with other sentimentors and of course they can be optimized. Thus,
the NanoTrader framework in conjunction with the Express environment gives
you an unparalleled power for specifying, optimizing, backtesting, and applying
your trading ideas.

Note that it is not a prerequisite to have the NanoTrader-TradingSystem per-
mission to take advantage of Express. You might use Express to compute and
plot classical indicators as well as creating graphical annotations to the chart or
issuing messages and alarms.

The scope of this document is to provide a description of the language Na-
noTrader-Express. It is not intended to give an introduction into the theory and
practice of programming or algorithms in general. A reader unfamiliar with the
concepts of programming may have a look at introductory books for, e.g., Visual
Basic, Pascal, Excel programming, or EasyLanguage for TradeStation. Once
the main concepts like variables, loops, or conditional expressions are under-
stood, working with Express will be very easy.

Besides a working knowledge of programming languages it is assumed that the
reader is familiar with the terminology used in the "NanoTrader – Charting &
Trading" manual.

Users having experience with other programming languages for building indica-
tors of trading systems should be aware of the overall "Sentimentor" approach
used by NanoTrader as this carries over to sentimentors programmed in Ex-
press, i.e., you will not find statements like "buy at open" – instead, an Express
based Sentimentor is a building block used generating sentiments that eventu-
ally lead to trading actions through the combination with the MetaSentimentor
and the applied trading approach.

2 Express – Execute Only

Access to the programming environment of Express requires a specific permis-
sion. However, NanoTrader allows users without the Express permission to ex-
ecute and view Express scripts, but they cannot change or create scripts on
their own.

In order to enable an Express script (or a study containing an Express script) to
be executed by an "ExecuteOnly" user that script needs to be opened once with
the Express editor by a user having the Express permission. When clos-
ing/saving the editor NanoTrader silently adds a watermark to the script which is
required for being executable by "ExecuteOnly" users.

 NanoTrader-Express

 NanoTrader-Express 5

We encourage programmers to spread their Express creations among the Na-
noTrader users.

3 Structure of an Express-Program

The way a Sentimentor is computed is as follows:

• Declare and initialize variables needed for the computation

• For each bar, carry out the required calculations.

• Compute the sentiments, i.e., how is the result of the calculation to be in-
terpreted

• Define one or more charts to be plotted

An Express program reflects this by enforcing the following structure:

Variable Declarations Section

Calculation Section

Interpretation Section

Plot Section

4 A Sentimentor Example

Let’s have a look at a simple Sentimentor that computes an exponential moving
average (EMA). Buy and Sell sentiments are generated if the EMA crosses the
close price. This Sentimentor is part of the NanoTrader distribution.

(Hint: This code is just an example to show the exact syntax of Express)

//(c) Fipertec

Express EMA

Vars

input $span (1, 200, 10);

numeric factor (0);

series ema;

Calculation

factor = 2 / ($span + 1);

if close[1] = void then //we need one lookback entry

 ema = close;

else

 ema = factor * close + (1 - factor) * ema[1];

interpretation TriggerLine(close, ema);

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

 NanoTrader-Express

 NanoTrader-Express 6

plot (ema, "blue", 2);

plot (close, "black", 1);

13.

14.

Explanation:

1. A double slash is used to start a comment reaching until the end of the
line. It is also possible to use curly braces { } for comments anywhere in
the code.

You can use this function to deactivate specific code lines.

2. The program always starts with Express <name>, where name be-

comes the name of the Sentimentor used in the DesignerBar.

3. With the keyword Vars the Variable Declarations Section is

started.

4. This line declares an integer variable that is subject to optimization. The
minimal value is 1, the maximal value is 200, and the initial value is 10.
The name of the variable, span, is displayed in the DesignerBar. By using

the $ character, it is immediately visible in the code where optimization
variables are used.

Now the word "span" is automatically shown in the workspace bar as a
variable and you can change it‘s name into a preferred name. The "$"
figure in front of the variable name means that this is an input variable.

5. factor is defined as a numeric variable that may hold integer or float

values. By using (0) it is initialized to zero. However, as Express guar-

antees to initialize numeric values to zero, the (0) could be omitted.

Express is not case sensitive, i.e. factor, Factor, FACTOR all refer to

the same variable. The same holds for keywords.

6. ema is defined as a series of float data. The series has the same length

as the analyzed MasterChart. The elements of the series are automati-
cally initialized to zero. By using the (val) mechanism, val would be

used as the initial value of all the elements of the series.

7. After the reserved word Calculation the statements for performing the

computations begin. Theses statements are executed for each bar in
turn, starting with the oldest or "left most".

8. The factor for the EMA computation is determined, based on the input

variable $span. The usual operators (+, -, *, /) and parenthesis can be

used for mathematical operations.

9. Express defines a number of series implicitly, e.g., close, open,

high, low, volume, to access the data of the MasterChart.

For computing the EMA value of the actual period the EMA value of the

 NanoTrader-Express

 NanoTrader-Express 7

previous period is also required. To access previous data of a series, an
indexing is used: close[1] denotes the close of 1 one period ago.

Generally, close[n] denotes the closing price of n periods ago, and

close is simply a synonym for close[0].

Assume we are calculating the EMA for the very first period then
close[1] will not be available. In this case, the value of close[1] will

be void, a reserved word that is used to identify non existing data.

The conditional statement if executes the then-part if the condition is

fulfilled. In case the then-part consists of more than one statement, the
then-part has to be started with begin and ended with end.

10. The first ema series element is assigned an initial value.

11. The ema for the current period is computed.

12. The conversion of the ema/close crossings into sentiments– called the
interpretation – can be carried out by the standard interpreter Trig-
gerLine. It would also be possible to compute the sentiments explicitly by
assigning sentiment values to the predefined series sentiment.

In case an interpretation scheme isn’t used it is possible to create the
sentiment value with individual code in the interpretation section. In this
case the sentiment values need to declared to the predefined series var-
iable "sentiment" and all code must begin with the words "begin" and
"end".
Example:

interpretation

begin

 if … then

 sentiment = 100;

 else

 …

end

13. The ema series is to be plotted in blue using a pen width of 2.

14. The close series is to be plotted in black using a pen width of 1.

5 Adding an Express-Sentimentor to a Study

To add an Express Sentimentor to a study, choose the desired Sentimentor
from the Express section of the Add Sentimentor dialog:

 NanoTrader-Express

 NanoTrader-Express 8

To edit the code of an Express Sentimentor double click the corresponding line
in the DesignerBar:

In case the Express Sentimentor applies a default interpretation scheme (see

below), the scheme can be configured by clicking the icon or by rightclicking
the Express Sentimentor in the DesignerBar and then choosing Edit interpretation
from the context menu:

 NanoTrader-Express

 NanoTrader-Express 9

This will bring up the associated sentiment editor:

More details about the interpretation scheme can be found in the document
"NanoTrader - TradingSystems".

 NanoTrader-Express

 NanoTrader-Express 10

6 Working with the Express Editor

6.1 Open the Express Editor

Double clicking on an Express Sentimentor in the DesignerBar will open the Ex-
press editor:

Note that the editor displays the reserved words of Express in blue and com-
ments in green. All colors can be defined through the Color Manager.

It is possible to open multiple Express editors at the same time.

While one or more Express editors are opened, you can continue to work with
NanoTrader. In particular, it is possible to zoom in the chart you are currently
working on MasterChart to investigate various sections of the chart.

It is also possible to change the parameters of the currently edited Express sen-
timentor in the DesignerBar and to change the aggregation of the MasterChart or
the sentimentor.

When executing the Express code, the parameters as defined in the DesignerBar
will overwrite those specified as defaults in the code.

While an Express editor is opened, the underlying sentimentor cannot be re-
moved from the study and the study cannot be closed prior to closing the editor.

6.2 Editor Toolbar and Context Menu

Most functions of the editor can be accessed through the toolbar or the context
menu. Also, a number of keyboard shortcuts allow for a quick execution of
various actions. The respecitve shortcuts are shown at the right side of the
context menu:

 NanoTrader-Express

 NanoTrader-Express 11

• Open
Replaces the current code with that of the selected file.

• Save/Save As
Saves the code in an external file. See "Understanding how Express
Programs are Saved" for details.

• Undo, Redo
Undo or redo the last text operation(s).

• Choose Font
Choose the font for displaying the code.

• Choose Colors
Choose the colors for displaying, highlighting, and marking the text.

• Find & Replace
Opens a dialog that allows to search for text or replace text.

• Bookmarks
Allows to set bookmars at important locations and to navigate to them
quickly.

 NanoTrader-Express

 NanoTrader-Express 12

• Breakpoints
Set or remove breakpoints. Execution will halt in lines with a breakpoint.
(For deatils, see Chapter "Debugging Express Code".)

A breakpoint can also be set by clicking into the marker area:

To remove an individual breakpoint, click on it in the marker area or

place the cursor in the line next to it and use the toolbar button , the

 NanoTrader-Express

 NanoTrader-Express 13

context menu, or Ctrl-B.
To remove all breakpoints, click in the toolbar or in the context menu.

• Line numbers
Toggles the display of line numbers.

• Outlining
Allows to show or hide code blocks. This can be helpful in case you work
on a very large program.
Code blocks that can be collapsed or expanded are preceded by and

 buttons, respectively.

A collapsed block is represented by . Pointing with the mouse at the
dots will show a popup with the collapsed lines of code.

• Code Analysis
Checks the code for efficiency as well as for unused series and varia-
bles. See also Section "The Need for Speed" for a discussion about effi-
ciency.

• Function Helper

 NanoTrader-Express

 NanoTrader-Express 14

The dropdown shows a list of available Express functions. To insert the

function into the text, first select it, then click the button. To view the
signature of the function, hover the mouse over it in the code.

 NanoTrader-Express

 NanoTrader-Express 15

• Color Picker & Displayer

Specifying appealing colors for plotted elements is important for getting
the most out of your Express code.
To pick a color, open the combo box and choose one of the predefined
colors. As soon a color was picked, its name is inserted at the current
cursor position:

To see the color corresponding to its name, doubleclick it in the code and
the color is displayed:

Express also supports the RGB notation for defining colors, so any po-
tential color can be defined. From the dropdown menu of the Color Pick-

 NanoTrader-Express

 NanoTrader-Express 16

er, choose More…

Then choose a color of your liking and click OK:

The RGB code is automatically added to the text.

Vice versa, selecting an RGB notation in the text displays the color in the
Color Picker & Displayer:

 NanoTrader-Express

 NanoTrader-Express 17

6.3 More Editor Functionality

6.3.1 Highlighting identical words

When doubleclicking a word, all identical words are marked. This is very helpful
to quickly spot where a variable or function is used:

In the example above, variable ema was doubleclicked and all appearances of

ema were marked.

To remove the marks, press the Escape-key or click on empty space in the edi-
tor.

6.3.2 Showing Function Signatures

Hover the mouse over a function to see its signature:

6.3.3 Block Indentation

To indent a block of lines, select them with the mouse, then press the Tab-key.
Press Shift-Tab to unindent:

 NanoTrader-Express

 NanoTrader-Express 18

6.4 Keyboard Shortcuts for Editing and Debugging

Where possible, the editor uses the usual Windows keyboard shortcuts.

Ctrl-C copies selected text to the clipboard

Ctrl-V pastes text from the clipboard

Ctrl-A selects the complete text

Ctrl-F2 toggles bookmark on current line

F2 go to next bookmark

F3 go to previous bookmark

Ctrl-B toggle breakpoint

Ctrl-S saves the text in a file

Ctrl-Z undo last action

Ctrl-Y redo last action

Ctrl-<Return> execute the program from the beginning

Ctrl-<Space> single step, i.e., break execution in next line

Shift<Return> continue execution from current breakpoint

Note: To avoid any accidental actions triggered by keyboard shortcuts, such as
placing or canceling orders, the hotkey handling of NanoTrader is disabled
while an Express editor is the active window of NanoTrader.

6.5 Executing an Express Program

Clicking the -button will execute the Express program and the re-
sults in terms of calculated series, plots, and signals are immediately displayed
in the charts. In case the code contains errors, NanoTrader will display appro-
priate error messages.

See Section "Debugging Express Code" to learn about and

.

6.6 Understanding how Express Programs are Saved

An Express program opened in the editor is always associated with a study.

 NanoTrader-Express

 NanoTrader-Express 19

When quitting the Express editor by clicking the OK-Button, the current program
is passed to the sentimentor from which it originated. Thus, you need to save
the study, if you want to make your changes permanent.

However, very often you want to reuse your code also in other studies. To do
so, you can save the code as a separate file by clicking the save icon:

The first time you click the save icon, you are queried for a filename.
Subsequently, clicking the save icon or pressing Ctrl-S will overwrite that file.

The current active filename is shown in the title bar of the Editor window:

To save space, the path of the installation directory is omitted and represeneted
by three dots.

If you want to change the filename, click the dropdown arrow next to the save
icon and choose "Save Express Script as…":

Saving the file in the Express directory of the NanoTrader installation (which is
the provided default location), will make the program available as a Sentimentor
in the Add Sentimentor-dialog.

It is good style to use the name of the Express program when saving it as a
template. Suppose the program starts with

Express UltimateSenti

then UltimateSenti is the name of the Sentimentor. This name appears in

the DesignerBar and in the legend of its chart window. When saving the program
as a file, it is desirable to use UltimateSenti.txt as the filename, although this is
not enforced by the editor.

 NanoTrader-Express

 NanoTrader-Express 20

7 Express Language Elements

7.1 Types

Express is a so-called typed language, i.e. every entity representing a value is
of a certain type. This allows NanoTrader to catch a broad range of potential
programming errors immediately.

The following types are supported by Express:

• numeric

A numeric value can be a float (e.g. 3.75) or an integer (e.g. 10). If need-
ed, NanoTrader automatically converts floats into integer values by strip-
ping the fractional portion.

• series

A series is a series of elements of type numeric. Suppose the ana-

lyzed MasterChart consists of 200 bars then a series will also automati-
cally consist of 200 elements. If the MasterChart is connected to a
realtime data feed, then a series will grow automatically.

• array

An array is a specified number of elements of type numeric. The size of

an array does not change automatically as a series does.

The entries of an array are initialized to 0.

• string

A string is a sequence of characters, like Hello World! When using

string constants in Express, the characters have to be enclosed in quota-
tion marks: "Hello World!"

• bool

A boolean entity can take the values true or false.

• time

Entities of type time are used to work with times and dates, e.g.,
if timeOpen < 10:00 then sentiment = 50;

if date = 2_8_2002 then sentiment = 100;

7.2 Reserved Words

Express uses a number of words that have a specific meaning. These words
cannot be used for naming variables.

Currently the reserved words are:

express, sentimentor, blocker, stop, vars,

calculation,interpretation, numeric, bool, info, export,

senti_block, senti_flat, senti_pass, series, string, if,
then, else, begin, end, for, to, downto, while, void, and,

 NanoTrader-Express

 NanoTrader-Express 21

or, plot, plotband, plotcrossinglines, plotline,

plotcandles, plotbars.

The following reserved words are for future use:

function, procedure, import, plothistogram

7.3 Expressions

An expression is a combination of operators and operands, like

5 + 3

where 5 and 3 are the operands and + is the operator.

Moreover, the value of a variable, a series, or the return value of a function are
also expressions.

Express distinguishes between three types of expressions: numerical, string,
and boolean.

7.3.1 Numerical Expressions

Numeric entities can be combined using the operators +, -, *, / with their usual

mathematical meaning, i.e.,

5 * close – 3*close[1];

Parenthesis can be used to group expressions as in

(high + low + close) / 3

7.3.2 Relational Expressions

A relational expression evaluates to true or false, as in
close > open.

The available relational operators are

Operator Meaning

> greater than

< less than

= equal to

>= greater equal than

<= less equal than

<> not equal to

Relational operations may be used with numeric, time, and string entities. In the
latter case the relational operation is evaluated with respect to the lexicograph-
ical ordering, i.e. "abc" is less than "xyz".

 NanoTrader-Express

 NanoTrader-Express 22

7.3.3 Logical Expressions

A logical expression is a combination of expressions evaluating to true or

false with the operators and and or, e.g.,

(close > open) and (volume <= 1000)

(close > close[1]) and ((open > close) or (volume > 1000))

Note: Always use parenthesis to indicate exactly the grouping of the expres-
sions. This enhances the readability of the code and avoids unnecessary pro-
gramming errors.

7.3.4 String Expressions

The only operator for two entities of type string is + that is used for concatenat-

ing the strings, e.g.,

"Hello "+ "World!"

results in the new string "Hello World!".

7.4 Variable Declarations

All variables used by an Express program have to be declared in the Variable

Declarations Section by stating the type and the name of the variable.

The name must begin with a character, e.g.,
numeric weight;

The initial value of a variable may be given in its declaration:

numeric weight(0.5);

To specify some variables of the same type the following notation can be used:

numeric weight, factor, delta;

Hint: Choose names for the variables that explain their meaning to make the
code easier to understand later.

Valid variable types are numeric, bool, series, and string. In case the ini-

tial values are not specified in the declaration, Express uses the following val-
ues:

Type Initialized to

numeric 0

bool false

series all elements set to 0

array all elements set to 0

string "", i.e., the empty string

 NanoTrader-Express

 NanoTrader-Express 23

A series variable can be bound to a series of another Express sentimentor

or to a series of a built-in sentimentor that is part of the study. See Section

Importing a series from another sentimentor for details.

Exporting Variables

numeric and string variables can have an optional export clause:

export "label;format";

Example:

numeric result export "Trending Days;%.02f";

string comment export "Comment";

The ";format"-portion is optional. (See function NumericToString() for a descrip-
tion of valid format strings.)

Exported variables are shown as separate columns in the result table of
Screeners:

The exported variables are also shown in the InfoBar of the study:

 NanoTrader-Express

 NanoTrader-Express 24

The configuration dialog for Scanners (LiveTables) allows to show variables ex-

ported from Express scripts.

As a LiveTable can hold various studies the column headers can only be gener-

ic. Up to ten exported Numeric/Series variables and ten exported Strings can be

shown:

7.5 Input Variables

Input variables are numeric variables that are exposed to the outer world. They
appear as parameters in the DesignerBar and can be altered by the end user, just
as any parameter of the built-in sentimentors. Moreover, the input variables are
subject to optimization, so they need a minimal, a maximal, and an initial value.
The declaration of an input variable is as follows:

input $<var name> (<min value>, <max value>, <initial value>);

Example:

input $span (1, 200, 20);

The $ sign is used as prefix to indicate anywhere in the code that the refer-

enced value is an input variable that is subject to optimization and hence is of
great importance for the overall computation.

 NanoTrader-Express

 NanoTrader-Express 25

A numeric variable can be defined to show a list of text options in the Design-

erBar using the following syntax:

input $<var name> (<"semicolon seperated options", <initial value>);

Example:

input $options ("option0;option1;option2", 1);

This will be shon in the DesignerBar as follows:

Internally the options are numbered starting with 0. The above example is
equivalent to the following definition without using option strings:

input $options (0, 2, 1);

Floating Point Variables

Very often, the input variables will only take integer values. However, some-
times you may need float values as input variables. For defining input variables
of type float two more specifications are required: the precision and the step
size. The latter is used by the optimization as the minimal change of the varia-
bles value. The declaration of an input variable holding float values is:

input $<var name> (<min value>, <max value>, <initial value>, <step

size>, <precision>,);

Example:

input $factor (1.00, 3.00, 2.00, 0.01, 2);

Showing Explanations

An input variable can have an optional info clause. E.g.:

input $span (1, 100, 20) info "Defines the number of peri-

ods used to compute the EMA.";

When clicking the parameter in the DesignerBar, the text is displayed in the De-

scription Area of the DesignerBar:

 NanoTrader-Express

 NanoTrader-Express 26

This allows to have a short description of each input parameter so the user

does not need to refer to some external documentation.

7.6 Accessing Variables and Series data

The value of a variable is accessed by simply using the variables name, as in
factor * delta

where factor and delta are declared as numeric variables.

An element of a variable of type series is always referenced relative to the

currently processed bar. The syntax is as follows:

<series name>[n]

where n denotes a positive integer or an expression.

Example:

close[1] or close[span], where span is a numeric variable.

The example references the close price of the previous bar (1 bar ago).

To access the current bar, it is possible to use the abbreviation close instead

of close[0].

7.7 Working with Arrays

An array has a fixed number of entries of type numeric.

An array can be defined in the Variable Declarations Section as fol-

lows:

Array a[100];

This defines an array containing 100 numeric entries.

There is a major difference in accessing array entries as opposed to series

entries, although the syntax is the same:

<array name>[n]

Eg. a[0] refers to the first entry of the array.

 NanoTrader-Express

 NanoTrader-Express 27

Note that the indexing starts with 0, i.e., valid indizes for the array a[100] are 0

to 99.

Also note the difference to working with series in that the index always repre-

sents an absolute index inside the array, not a relative offset with respect to

the current bar index.

An array might be resized using the function SetArraySize(), e.g

SetArraySize(a, 250);

All entries of an array might be set to a specific value using the function
SetArrayTo(), e.g.,

SetArrayTo(a, 500);

7.8 Assignments

A declared variable can be assigned a value using the = operator:

span = high – low;

When assigning a value to a variable of type series, Express automatically

uses the element currently processed in the calculation section: Suppose me-

dian is a variable of type series and Express performs the calculation for the

25th bar of the MasterChart, then

median = (high + low + close) / 3;

assigns the result of the expression to the 25th element of the median series.

7.9 Assigning Sentiments

The sentiments of a Sentimentor programmed in Express have to be stored in
the predefined series sentiment. As a sentiment has to be a value between 0

and 100, Express automatically enforces this, i.e., if a value greater than 100 is
assigned, Express uses 100 instead, and in case a negative value is assigned,
Express uses 0.

When computing sentiments, it is sometimes very convenient to assign a senti-
ment not only for the current period but also for the next 3, say, periods. This
can be achieved using the following notation:

sentiment = [100; 90; 80;];

With this function the sentiment value is assigned to 100 for the 1st period, for
the next period the sentiment will be 90 and for the next 80.

Note that this so-called list assignment is only valid for the predefined series
sentiment.

7.10 Predefined Series

The following series referring to the MasterChart are always available:

open, close, high, low, volume.

 NanoTrader-Express

 NanoTrader-Express 28

You may also use the abbreviations o, c, h, l, v.

For Renko charts the series renkoHigh, renkoLow are available to access

the high and low of a brick.

The following series of type time are also available:

Series Meaning

date the date of the end of the period

dateOpen the date of the beginning of the period

time the time of the end of the period

timeOpen the time of the beginning of the period

dateTime the date and time of the end of the period

dateTimeOpen the date and time of the beginning of the pe-
riod

Finally, the series sentiment has to be used for storing the computed senti-

ments unless one of the default interpretation schemes is used.

With the exception of the sentiment series, all predefined series are read only,
i.e., it is not possible to assign a value to them.

7.11 Importing a Series from another Sentimentor

A series variable can be bound to a series of another Express sentimentor

or to a series of a built-in sentimentor that is part of the study by using the fol-

lowing syntax:

series myseries (sentimentorName.seriesName);

The variable myseries will be a read-only reference to seriesName of the

sentimentor named sentimentorName.

This scheme is extremely helpful when using the computational result from a
sentimentor creating signals in another sentimentor that is used as a stop.

The following example demonstrates this.

Express EMA_Mid

Vars

series emaHigh, emaLow, emaMid;

input $span (0, 200, 10);

Calculation

if IsFirstBar() then

begin

 ExpMovingAverage(high, emaHigh, $span);

 ExpMovingAverage(low, emaLow, $span);

end

 NanoTrader-Express

 NanoTrader-Express 29

emaMid = (emaHigh + emaLow) / 2;

interpretation TriggerLine(close, emaMid);

plot (emaMid, "blue", 2);

The EMA_Mid sentimentor creates signals based on a trigger price calculated
from the EMAs oft the period highs and lows.

Now assume a stop sentimentor should rely on exactly that trigger series. In-
stead of replicating the code and forcing the input parameters to be the same
the stop could simply import the trigger series names emaMid.

An example would be as follows:

Express Stop EMA_MidStop

vars

input $ofs (-25, 25, 10);

series anchor (EMAMidExpress.emaMid);

//The stop trails along the imported series with $ofs

//ticks.

numeric last;

calculation

if MarketPosition() = 1 then

begin

 if IsIntradayEntry() then

 last = -999999;

 last = max (last, anchor - $ofs * TickSize());

 SetStopPrice(last);

end

else

begin

 if IsIntradayEntry() then

 last = 999999;

 last = min (last, anchor + $ofs * TickSize());

 SetStopPrice (last);

end

Naming Convention

The imported sentimentor has to be written as it is shown in the DesignerBar
with dropping all non-alphabetical characters including spaces.

 NanoTrader-Express

 NanoTrader-Express 30

Therefore, the sentimentor "EMA_Mid
– Express" as shown to the right will
become
EMAMidExpress.

The name is not case sensitive, hence

EmamidExpress would also be feasi-

ble.

If the study contains multiple "EMA_Mid – Express" sentimentors then they
have to be indexed:

series anchor (EMAMidExpress2.emaMid);

Import from a Built-in Sentimentor

It is also possible to import a series from a built-in sentimentor, e.g.:

series myBollinger (BollingerBands.upperBand);

The series that can be imported are listed in the Sentimentor Visualization dialog.
For Bollinger Bands this dialog looks as follows:

Calling Sequence

If sentimentor A imports a series from sentimentor B then A must be recalculat-
ed whenever the settings for B are changed. NanoTrader ensures the correct
call sequence automatically. Moreover, there is no limit of the number of imports
a sentimentor can have. Imports can be nested in any depths, e.g., A might im-
port from B which imports from C and so forth.

7.12 Importing an Array from another Sentimentor

An Array can also be imported from a sentimentor.

Example:

 NanoTrader-Express

 NanoTrader-Express 31

Express Array_Exporter

Vars

numeric i;

array levels[500];

Calculation

 ...

 levels[i] = close – open;

 …

The array levels can be imported using the same naming conventions as de-

scribed for importing a series:

Express Array_Importer

Vars

array importedArray[ArrayExporterExpress.levels];

series test;

Calculation

 if CurrentBarIndex() < GetArraySize(importedArray) then

 test = importedArray[CurrentBarIndex()];

interpretation begin end

plot (test, primary, 2);

By means of the Study sentimentor, it is even possible to import an array from a
sentimentor that is located in another study:

array importedArray[study.ArrayExporterExpress.levels];

 NanoTrader-Express

 NanoTrader-Express 32

An imported array is read-only, i.e. the elements of the array can only be read,
but not written.

7.13 Importing Price Data from another Symbol

As a special case of the above discussed importing of series from another sen-
timentor the price data of a symbol used by the Study sentimentor can be ac-
cessed. Recall that one usage of the Study sentimentor is to just display the
price data of the accessed symbol.

Assume a Study sentimentor accesses the DAX future:

An Express sentimentor could access the price data as follows:

series dax (StudyDaxMar.close); //or .open, .high, .low

As Future contracts often carry their expiry date at the end of their name, hence
forcing to adapt the code whenever the contract rolls over, it is possible to pro-
vide only the beginning sequence of symbol name, e.g.:

series dax (StudyDax.close);

7.14 Date and Time constants

Time constants may be used in boolean expressions. A time has the format
HH:MM or HH:MM:SS

Example:
14:15 14:50:40

If the seconds are omitted they are automatically set to 0.

The format of a date is:

DD_MM_YYYY

Example:

22_10_2002

Time and date constants can be used in boolean expressions, as in

 NanoTrader-Express

 NanoTrader-Express 33

//don’t buy during the first hour of the session:

if time < 10:00 then

 sentiment = 50; Statements

A statement is a complete Express instruction composed out of reserved words,
operators, operands and ended by a semicolon. E.g.

delta = high – low;

7.15 Statements

A statement is an assignment or a procedure call, each terminated by a semico-
lon, or a complete control structure.

Example statements:

delta = high – low;

MovingAverage (close, mySeries, 10);

if (open > close) then up = up + 1;

7.16 Control Structures

7.16.1 if then

The if control structure is used to execute statements only if a specified condi-
tion is met. The syntax is:

if <boolean expression> then

 <statement>;

If several statements are to be executed the following syntax has to be used:

if <boolean expression> then
begin

 <statement>;

 <statement>;
 ...

 <statement>;
end

Example:

if close > open then

 upMoves = upMoves + 1;

7.16.2 If then else

The if control structure may also contain statements to be executed in case the
condition is not met:

if <boolean expression> then

 <statement>;

 NanoTrader-Express

 NanoTrader-Express 34

else

 <statement>;

Again, use begin and end to group a number of statements to be executed.

Example:

if close > open then

 upMoves = upMoves + 1;

else

begin

 downMoves = downMoves + 1;

 downVol = downVol + volume;

end;

7.16.3 While Loop

The syntax of the While loop is as follows:

while <boolean expression>

begin

 <statement>;

 <statement>;

...

 <statement>;

end

The statements are executed until the <boolean expression> evaluates to true.

Example:

lastHigh = 1;

vol = 0;

while (close[lastHigh] <> void) and (close >

close[lastHigh])

begin

 vol = vol + volume[lastHigh];

 lastHigh = lastHigh + 1;

end

Note: Double check that the boolean expression will finally evaluate to false,

otherwise the while loop would run endlessly and the system will be blocked.
There is no way for NanoTrader to verify the finiteness of a <boolean expres-

sion>. Therefore, if a while loop does not terminate within five seconds, the

Express program is terminated by NanoTrader.

7.16.4 For Loop

The syntax of a For loop is as follows:

for <variable> = <start value> to <numerical expression>

begin

 NanoTrader-Express

 NanoTrader-Express 35

 <statement>;

 <statement>;

...

 <statement>;

end

At the beginning of the for loop, <variable> is set to the <start value>. If <vari-

able> does not exceed < numerical expression> then the statements are exe-

cuted and <variable> is increased by one. This process repeats until <variable>

finally exceeds <numerical expression>.

Example:

upMoves = 0;

for i = 0 to 9

begin

 if close[i] > open[i] then

 upMoves = upMoves + 1;

end

Sometimes it is desirable to decrease the <variable> and to stop the loop if the

<variable> falls below <numerical expression>. This can be achieved by using

the following variant of the for loop:

for <variable> = <start value> downto <numerical

expression>

begin

 <statement>;

 <statement>;

...

 <statement>;

end

Note: Double check that the <variable> will finally exceed<numerical expres-

sion> (or falls below it in case of the downto variant).

There is no way for NanoTrader to verify the finiteness of a for loop. Therefore,

if a for loop does not terminate within five seconds, the Express program is

terminated by NanoTrader.

7.17 The Need for Speed

Whenever while or for loops are used, make sure that the computation you

are carrying out is efficient. It is very easy to implement a calculation in a naive
way that works, but that requires an enormous amount of computation time.

Take for example the calculation of a 50-bar moving average. The naive ap-
proach would sum up the close price of the current and the previous 49 bars

 NanoTrader-Express

 NanoTrader-Express 36

and then divide the result by 50. A more intelligent approach would take ad-
vantage of the fact that whenever moving to the next bar, the new sum could be
computed by subtracting the "leftmost" price and adding the price of the current
bar.
Hence, the naive approach is 50 times slower (in words: fifty) than the more in-
telligent approach. For a 200-bar moving average it would be 200 times slower.
Now suppose what happens if you use the "naive" implementation within an op-
timization...

Quite often some calculations can be performed after all bars have been pro-
cessed, e.g., you want to apply a moving average on a complete series you
have computed. This can be achieved easily by using the boolean built-in func-
tion IsFinalBar():

...

series result;

input $span (1, 200, 10);

Calculation:

..result = ...;

 if IsFinalBar() then //true, if currently the final bar

 //is processed

 MovingAverage (result, result, $span);//built-in

 //function

Whenever you assume that your Express script requires a lot of computation
time, make sure to call CalculateAtEveryTick(false); at the beginning of the

script. This ensures that the script is only executed at the end of a period and
not with each incoming tick. Obviously this will tremendously decrease the
overall workload.

Note: Use the code analysis regularly by clicking the icon in the toolbar. This
will point out some obvious inefficiencies that your code may contain as well as
unused variables and series.

7.18 Interpretation – Computing the Sentiments

The main aspect of a Sentimentor is obviously the computation of a sentiment
for each period. This is done in the Interpretation Section of an Express

program. The Interpretation Section starts is introduced with the re-

served word Interpretation.

7.18.1 Interpretation Using the Built-in Schemes

Very often the computation of the sentiments can be performed by one of the
built-in interpretation schemes that are also used by the built-in sentimentors.
Moreover, when using a built-in scheme, the corresponding editor for configur-
ing the scheme details is available. So relying on a built-in scheme greatly sim-
plifies the programming of an Express Sentimentor.

 NanoTrader-Express

 NanoTrader-Express 37

A built-in scheme can be called like a normal function.

Example:

interpretation TwoThresholds (mySeries, $upZone,

 $downZone);

or
interpretation TriggerLine (close, mySeries);

The TriggerLine scheme would compute the sentiments based on the close

series crossing the series mySeries.

In case a built-in scheme requires input variables they have to be provided as
parameters.

The following built-in schemes are available:

Built-in scheme Typical usage

TwoThresholds (series curve,

 input upThreshod,

 input downThreshold)

RSI

TriggerLine (series curve,

 series trigger)
Crossing MA

Swing (series curve

 input spanLeft,

 input spanRight)

Momentum

Bands (series curve,

 series lower,

 series upper)

Bollinger Bands

When using a built-in scheme, the plot statements may be omitted – Express
will automatically plot the series used in the built-in scheme. However, if at least
one plot statement is given, this standard mechanism is not applied.

7.18.2 Programming the Interpretation Explicitly

In case no built-in scheme matches the intended interpretation the sentiments
can be computed explicitly using the syntax:

interpretation

begin

 <statement>

…

 <statement>

end

Note the begin and end surrounding the statements for computing the senti-

ments.

The process for computing the sentiments equals the process in the calculation
section, i.e., the statements are executed for each bar, starting with the oldest
("left most") bar.

 NanoTrader-Express

 NanoTrader-Express 38

The sentiments have to be assigned to the predefined series sentiment. Na-

noTrader initializes the elements of the sentiment series with 50, i.e., neutral.

Example

interpretation

begin

 if CrossesAbove (close, mySeries) then

 sentiment = 100;

end

Instead of assigning the sentiment for the current bar only, it is also possible to
assign sentiments for the following bars. With this technique, an event can be of
significance not only in the period where it happens but also in the following pe-
riods.

Example:

interpretation

begin

 if CrossesAbove (close, mySeries) then

 sentiment = [100; 90; 80;];

 else if close > mySeries then //staying above mySeries

 if sentiment = 50 then //do not overwrite

crossing event

 sentiment = 65;

end

The so-called list assignment

sentiment = [value; value;...;];

is only valid for the series sentiment.

7.19 Plotting

The final statements of an Express program are one or more plot statements

following the syntax:

plot (<series name>, <color>, <pen width>);

or

plotline (<constant or variable>, <color>, <pen width>);

Examples:

plot (mySeries, "blue", 2);

plotline ($threshold, "green" 1);

 NanoTrader-Express

 NanoTrader-Express 39

Sometimes it is interesting to plot candles or bars based on real or modified
price data. This can be achieved by the following plot routines:

plotcandles (<open series>, <close series>, <high series>,

 <low series>);

or

plotbars (<open series>, <close series>, <high series>, <low series>);

To fill the area between two series use plotband (e.g. for sentimentors like

Bollinger Bands):

plotband (<upper series name>, <color>, <pen width>,

<lower series name>, <color>, <pen width>,

<fillcolor>);

If two series that are crossing each other are to be plotted and the enclosed ar-
eas should be filled in dedicated colors use plotcrossinglines (e.g. for

sentimentors like Crossing Moving Averages):

plotcrossinglines (<series1 name>, <colorname>, <pen width>,

<series2 name>, <color>, <pen width>,

<fillcolor series1 above series2>,

<fillcolor series1 below series2>);

7.20 More on Colors

The color of any plotted element needs to be compatible with the color of the
chart background, i.e., a dark blue line on a black background is not very help-
ful. In other words, every color definition should look "good" on a light chart
background as well as on a dark background.

To accommodate this, NanoTrader allows the specification of so-called dual
colors.

7.20.1 Dual Colors

A dual color always consists of the color specification for a light chart back-
ground, followed optionally by a color specification for a dark chart background.
A tilde ~ character separates both colors:

"DarkBlue~LightGreen"

NanoTrader automatically selects the correct color when plotting an element
depending on the current background, i.e., DarkBlue on a light background, and
LightGreen on a dark. Thus, you could easily change the application look of
NanoTrader from, say, "Silver" to "Night", and the Express sentimentors will au-

 NanoTrader-Express

 NanoTrader-Express 40

tomatically adjust. This is also very helpful if you intend to provide your Express
sentimentors to other users.

If the color to be applied for a dark background is omitted in the color specifica-
tion, then NanoTrader automatically creates it using the luminosity of the color
for the light background as a starting point. Hence, a “dark blue on a light back-
ground” becomes a “light blue on a dark background”.

The simple specification of a single color thus implicitly defines a dual pair of
colors. In other words, dual colors allow you to specify the appearance of the
plotted elements precisely, but if you choose to go with a single color, then
NanoTrader will silently do its best beind the scenes to create a good looking
plot on any background.

7.20.2 Syntax of a Dual Color Specification

The general format for specifying dual colors is:

<color spec for light bg>~< color spec for dark bg>

where the second part, starting with ~, is optional.

A color spec consists of the color name or its RGB values, written as three

comma separated integers.

The RGB (Red/Breen/Blue) values are integers in the range of 0 to 255 defining
the strength of the respective color component.

Examples:

plot (close, "black", 1);

Uses black on a light chart background and the auto-adapted color on a dark
chart background.

plot (close, "black~white", 1);

Uses black on a light chart background and white on a dark background.

plot (close, "128,128,255~yellow”, 1);

Using RGB notation for the first color.

plot (close, "1325324~0,0,255", 1);

Using integer notation of the RGB values for the first color.

The valid color names can most easily inserted into the text through the Color
Picker in the Editor's toolbar.

 NanoTrader-Express

 NanoTrader-Express 41

7.20.3 Logical Color Names

In addition to the color names, a set of logical colors can be use. Logical colors
are already predefined for light and dark backgrounds. They can conveniently
be used to access good looking colors for typical use cases. Using the same
colors in similar scenarios makes it easier to "read" and understand sentimentor
graphics.

The logical colors are:
• Primary The primary curve in a chart

• Secondary The secondary curve, i.e., in CrossingMA

• UpperBand

• LowerBand

• FillBand A standard fill color

• UpperThreshold

• LowerThreshold

• Threshold

Example:

plot (close, "primary", 1);

plot (ma, "secondary", 1);

Note: A logical color implicitly defines colors for a light and dark backgrounds.
Thus, a specification like “primary~red” is invalid and not accepted by the Ex-
press compiler.

7.20.4 Specifying the Opacity for fill colors, Highlight(), and Annotate()

A color specification also allows to define the opacity when specifying a fill color
or a color for Highlights or Annotations.

The opacity (also called “alpha”) is a value between 0 and 100, where 100
means the color is fully opaque. (Note: Do not confuse this with RGB values
which are in the range of 0…255.)

The opacity is optional. If it is not provided, then it defaults to 25. Otherwise, it is
separated from the color specification by a comma.

Examples for color specifications with opacity:

 NanoTrader-Express

 NanoTrader-Express 42

"red,7"

"primary,75"

"128,128,22,75"

"red,75~blue,60"

Usage Examples:

Highlight("textAbove:Hello Colors!", "blue,80~SpringGreen,80");

plotband(high, "green", 2, low, "red", 2, "blue,40~yellow,44");

8 A Blocker Example

In addition to the sentiment values in the range from 0 to 100, NanoTrader sup-
ports two specific sentiment states that are used in conjunction with filters:

• BLOCK
Long and Short signals are rejected

• FLAT
Long and Short signals are rejected. In addition, a possible open position
is closed.

When working with Manual Sentimentors NanoTrader allows the usage of these
states, e.g, to prohibit the trading at a certain daytime.

The programming of such a Blocker using Express is shown in the following ex-
ample:

Express Blocker VolCheck

Vars

series twoPeriodVol;

1.

 NanoTrader-Express

 NanoTrader-Express 43

Calculation

if CurrentBarIndex () > 1 then

 twoPeriodVol = vol[1] + vol;

interpretation

begin

 if twoPeriodVol < 10000 then

 sentiment = senti_block;

 else if twoPeriodVol > 5000000 then

 sentiment = senti_flat;

 else

 sentiment = senti_pass;

end

plot (twoPeriodVol, blue, 2);

2.

3.

4.

Explanation:

 The keyword Blocker declares this sentimentor to work as a Blocker.

This enables the usage of the sentiment constants senti_block, sen-

ti_flat and senti_pass. Moreover, this keyword ensures that the

sentimentor can only be added as a Filter into a study.

 The constant senti_block makes sure that Long and Short signals are

rejected (blocked).

 The constant senti_flat makes sure that Long and Short signals are

rejected and a possible open position will be closed.

 The constant senti_pass does not filter any signal.

 NanoTrader-Express

 NanoTrader-Express 44

9 A Stop Example

The implementation of a pricebased stop, i.e. a sentimentor that computes a
stop price, is demonstrated with the following example:
Express Stop Simple

vars

input $increase (1, 25, 10);

series ma;

calculation

 if IsFirstBar () then

 MovingAverage (close, ma, 10);

 if MarketPosition() = 1 then //long

 begin

 if IsIntradayEntry() then //we just opened the position

 SetStopPrice (EntryPrice() - 15);

 else

 SetStopPrice (ma - 100 + $increase* BarsSinceEntry());

 end

 else if MarketPosition() = -1 then //short

 begin

 if IsIntradayEntry() then //we just opened the position

 SetStopPrice (EntryPrice() + 15);

 else

 SetStopPrice (ma + 100 - $increase* BarsSinceEntry());

 end

1.

2.

3.

4.

5.

Explanation:

 The keyword Stop declares this sentimentor to work as a price based

stop. This enables the usage of functions only available for this kind of
sentimentors. Moreover, this keyword ensures that the sentimentor can
only be added as a Stop into a study.

 The function MarketPosition()informs about the current position:

1 = long
0 = flat
-1 = short

 The boolean function IsIntradayEntry() returns true in case the

position has just been opened in the current, not yet closed period.
Sometimes it is necessary to use a different scheme for calculating the
stop price for the initial period, e.g., based only on the entry price. In
case the position is not closed within this initial period, the stop price for
the next period to come will be calculated again.

 NanoTrader-Express

 NanoTrader-Express 45

 The function SetStopPrice() makes the computed stop price availa-

ble to NanoTrader that will choose the tightest stop among all used stops
in the current study.

 For Stop sentimentors there is no Interpretation Section and no
Plot Section

10 A Stop/Tactic Example with intraperiod updates

At activation time/fill time the stop is placed $initialRisk ticks below the entry
price. When the traded price reaches the entry price + $profitTrigger ticks the
stop is adjusted to entryPrice + $initialProfitOffset. From that moment on it
starts trailing with a distance of $trail ticks. If the $trail parameter is set to 0, not
trailing occurs.

Express Stop BETrailStop

vars

input $initialRisk(0, 50, 10);

input $profitTrigger(0, 5, 3);

input $initialProfitOffset(0, 5, 2);

input $trail(0, 10, 5);

numeric entryPrice, tickSize;

numeric extreme;

numeric breakEven, trailStop;

calculation

if IsFirstBar() then

begin

 SetIntraPeriodUpdate();

 entryPrice = EntryPriceOriginal();

 tickSize = TickSize();

end

if MarketPosition() = 1 then //Long position

begin

 if IsIntradayEntry() then

 extreme = MaxPriceEntryBar();

 else if (BarsSinceEntry() = 0) then//We entered via a study

 //at the end of the period

 extreme = close;

 else

 extreme = max (extreme, Highest(high, BarsSinceEntry()));

 breakEven = entryPrice + $profitTrigger * tickSize;

 if $trail = 0 then //trail deactivated?

1.

2.

3.

 NanoTrader-Express

 NanoTrader-Express 46

 trailStop = -9999;

 else

 trailStop = extreme - $trail * tickSize;

 if extreme >= breakEven then

 SetStopPrice (max(entryPrice + $initialProfitOffset *

 tickSize, trailStop));

 else

 SetStopPrice(entryPrice - $initialRisk * tickSize);

end

else if MarketPosition() = -1 then //Short position

begin

 if IsIntradayEntry() then

 extreme = MinPriceEntryBar();

 else if (BarsSinceEntry() = 0) then

 extreme = close;

 else

 extreme = min (extreme, Lowest (low, BarsSinceEntry()));

 breakEven = entryPrice - $profitTrigger * tickSize;

 if $trail = 0 then

 trailStop = 999999;

 else

 trailStop = extreme + $trail * tickSize;

 if extreme <= breakEven then

 SetStopPrice (min(entryPrice - $initialProfitOffset *

 tickSize, trailStop));

 else

 SetStopPrice(entryPrice + $initialRisk * tickSize);

end

Explanation:

 The existence of this routine in the source code activates the intra period
updates.

 The opening price of the position as booked in the account.

 The highest price achieved in the opening period after opening the posi-
tion.
Example:
60-minutes periods. Position entry after 30 minutes => the return value is
the high of the remaining 30 minutes.

 NanoTrader-Express

 NanoTrader-Express 47

11 Debugging Express Code

The Express environment is equipped with a so-called Debugger. A debugger
allows to stop the code execution at certain breakpoints and to evaluate the var-
iables and program flow. This allows to spot bugs easily and fix them.

11.1 Setting Breakpoints

11.1.1 In the Editor

The fastest way to set a breakpoint is by clicking into the marker section on the
left side of the editor:

Alternatively, a breakpoint can be set in the current line via the toolbar, the con-
text menu, or by pressing Ctrl-B.

Any number of breakpoints can be set.

If a breakpoint is set at a line that does not contain breakable code, then the
breakpoint is automatically moved to the next appropriate line as soon as the
program execution starts or continues.

Once a breakpoint is encountered during program execution, the execution is
stopped and the line where the break occurred is highlighted:

 NanoTrader-Express

 NanoTrader-Express 48

The color for the highlighting can be adjusted in the color manager.

Note that in the above example the else clause was executed. Otherwise, the

breakpoint would have been ignored.

The program is halted before the code on the break line is being executed.

Removing Editor Breakpoints

To remove an individual breakpoint, click on it in the marker area or place the

cursor in the line next to it and use the toolbar button , the context menu, or
Ctrl-B.

To remove all breakpoints, click in the toolbar or in the context menu.

11.1.2 Breakpoints by Function Calls

Sometimes one wants to break the code execution only under specific condi-
tions. To achieve that, the following three Express functions are available.
These functions are only active when the code is open in the editor. Otherwise,
they are ignored.

• Break()
Breaks the execution precisely where the function call occurs:

• BreakIf (boolean expression)
Breaks if the boolean expression evaluates to true:

• BreakIfDrawingTool()
When executing this function, NanoTrader checks if at the current bar a drawing
tool either starts or ends in the MasterChart.
In the example below, a rectangle was drawn around an “interesting” area.
NanoTrader will break at the first and last covered bars:

 NanoTrader-Express

 NanoTrader-Express 49

(See next Section for further explanations.)

11.2 Inspecting Variables when a Breakpoint was hit

In the MasterChart

As soon as a breakpoint occurs, NanoTrader displays a gray vertical bar in the
MasterChart to highlight the period that is currently being processed. This is in-

dicated by in the above example. If the period lies outside the current zoom
then the zoom is adapted automatically.

All variables used in the code and their current values are displayed in the lower

part of the MasterChart . “Used” means that the variable or series is not only
defined, but also referred to in the code.

In the Editor

While the program execution is halted, you can point with the mouse at a varia-
ble or series and its current value will be shown in a popup window:

Pointing at an array will display its content:

 NanoTrader-Express

 NanoTrader-Express 50

11.3 Highlighting of Changed Variables

A variable’s value is plotted in red in the chart if its value has changed when
compared to its value at the previous break:

11.4 Continuing Code Execution from a Breakpoint

When a breakpoint was hit, there are three ways to continue with the execution:

• Execute
When clicking the “Execute” button, the code is re-executed, i.e., the execution
starts with the first bar and the first statement.
Whenever the code was changed, you should use “Execute” to re-run the script.

 NanoTrader-Express

 NanoTrader-Express 51

• Continue
The program execution is continued at the point where it was stopped.

• Single Step
The program execution is continued at the point where it was stopped, but au-
tomatically breaks at the next line. This makes it easy to follow the program flow
without having to explicitly set a breakpoint in each line. Furthermore, value
changes of the variables can be easily tracked.

11.5 Some Tips & Tricks for Debugging

• to halt execution at the beginning of every bar, place a breakpoint at the
Calculation clause:

• to halt execution at the end of every bar, place a break() statement at the
end of the calculation clause:

• plot a series that holds intermediate values

• use Annotate() or Highlight() to plot values and debugging notes

directly into the chart

• use ShowTip() to assign popups to individual periods, as in:

 NanoTrader-Express

 NanoTrader-Express 52

Recall that you can zoom freely in the chart even if an editor is opened.
Thus, after executing the code once, the tips can be inspected easily.

To display all used variables, call VarsToString() with an empty

string:
ShowTip(VarsToString(""));

11.6 Using DDE to simulate specific data

Often specific data constellations need to be tested. To achieve this it is very
comfortable to create the data via Excel yourself. To do so activate DDE in Ex-
tras|Datasources. In the installation directory of NanoTrader you will find the file
Realtime_test.xls. Open this file and add the sentimentor which is to be de-
bugged to a study that is based on Excel. (Depending on you Excel version you
might need to use a symbol available in the "Excel-English" folder.)

12 Encrypting Express-Sentimentors

Express sentimentors can be encrypted. This allows a broad range of commer-
cial third party applications. An encrypted Express sentimentor can be used ex-
actly as the provided built-in sentimentors. However, the Express code itself
cannot be edited or seen by the user.

 NanoTrader-Express

 NanoTrader-Express 53

To encrypt an Express sentimentors, chose from the main menu bar Ex-
tras|Encrypt Express Sentimentors.

This will bring up a file selection dialog which allows you to select all the Ex-
press sentimentors to be encrypted. After finishing the selection the following
dialog is shown:

This dialog allows to define the password. Moreover, an optional expiration date
can be defined, i.e., you might enforce a user to renew his subscription to you
Express sentimentor after a given date.

Also, the Express sentimentor can be licensed to a special user name.

In contrast to a normal Express sentimentor an encrypted Express sentimentor
is referred to by the study, i.e., the study refers to the encrypted file that needs
to be located in the Express subdirectory of the installation directory. Hence,
when distributing a complete study that contains an encrypted Express senti-
mentor, the encrypted Express file has also to be delivered.

13 Built-In Functions and Procedures

Express provides a number of built-in functions that can be called from within an
Express program. If a built-in function requires parameters, NanoTrader checks
if the provided parameters match the function definition. A function definition
declares how a function is to be called.

The function definition of the Max()-function is given as:

float Max (float value1, float value2)

Hence, the return value of the function Max is of type float. The functions

takes two parameters, both of type float. Recall that Express automatically

converts integer values to float values if needed, so

Max (close, 5000)

is a valid call, as 5000 would automatically be converted into a float value.

 NanoTrader-Express

 NanoTrader-Express 54

Functions returning a value can be used in expressions, as in

mySeries = Max (open, close) * 2;

Functions that do not return a value are also called procedures. A procedure
call cannot be used in an expression. Instead, it forms a complete statement:

MovingAverage (mySeries, mySeries, $span);

The definition of MovingAverage is

void MovingAverage (series source, series target, int span)

The return value void indicates that there is in fact no return value.

The names of the parameters in the definitions are chosen such that they indi-
cate their role for the function – they have no other specific meaning.

Even if a function does not receive parameters, the parenthesis have to be
used:

index = CurrentBarIndex();

The following built-in functions are available:

Definition: float AbsValue (float value)

Meaning: Returns the absolute value of `value’.

Example:

AbsValue (-3.7) returns 3.7; AbsValue (5) returns 5

Definition: void Annotate (string type, string color, float high, float low)

 void Annotate RGB (string type, int red, int green, int blue, float high,
 float low)

 void AnnotateAt (int offset, string type, string color, float high,

 float low)

 void AnnotateRGBAt (int offset, string type, int red,int green,int blue,
 float high, float low)

Meaning: Adds a note to the current bar with respect to the chosen `type’ in the
specified `color’.

The following types are supported: (See screenshot)

"ellipse", "upTriangle", "downTriangle" as well as "labelLeft", "labelCenter" and
"labelRight".

The vertical position and size of the annotation for the types "ellipse", "upTrian-
gle" and "downTriangle" is determined by the parameters `high’ and `low’.

 NanoTrader-Express

 NanoTrader-Express 55

The text to be displayed with "labelLeft", "labelCenter" and "labelRight" is ap-
pended to the type separated by a colon, e.g.:

Annotate("labelLeft:This text appears\nleft of the period",

 "black", (open+close)/2, 0);

A line break can be enforced by using the charater sequence \n. Lines are not

wrapped automatically.

The vertical position of the text is determined by the parameter `high’.

See function "plot" for a listing of the supported color names.

See Section "More on Colors" to learn about how to specify colors and their
opacity.

Multiple notes can be overlaid.

Example:

if (volume > 500) then

 Annotate("ellipse", "green,25", high, low); //opacity 25%

if (volume > 500) and IsBarCompleted() then

 Annotate("ellipse", "green", high, low); //no intra bar

 //annotation

The "At"-versions allow to annotate the current bar, similar to indexing price da-
ta.
Example: use AnnotateAt(2, "upTriangle", "blue", high, low) to set a note two
periods before the current bar. This makes it easy to annotate price patterns
that stretch out over multiple periods for example.

 NanoTrader-Express

 NanoTrader-Express 56

See also Highlight().

Definition: float ArcTangent (float value)

Meaning: Returns the arcus tangent of `value’.

Example:

ArcTangent (2.7475) returns 70.

Definition: float Atr (int span)

Meaning: Returns the Average True Range of the MasterChart for the actual
and previous `span’ bars expressed in percent.

Definition: float AtrAbs (int span)

Meaning: Returns the Average True Range of the MasterChart for the actual
and previous `span’ bars expressed in points.

Definition: void Bands (series series, series lower, series upper)

Meaning: Standard interpretation scheme where the sentiments are computed
based on an upper and lower series

Example:

interpretation Bands (close, myLower, myUpper);

Definition: int BarsSinceEntry ()

This function is only available for Stop sentimentors.

Meaning: Since how many periods is the current trade open?

Example:

if (MarketPosition() = 1) and (BarsSinceEntry() > 10) then

...

Definition: float Break ()

Meaning: Halts program execution and allows to inspect variables. The period
in which the break occurred is highlighted in the chart.

Example:
Break();

This function is only active while the Express code is executed via the Express
editor. Otherwise, the function is ignored.

 NanoTrader-Express

 NanoTrader-Express 57

Definition: float BreakIf (bool value)

Meaning: Same as Break(), but the program is halted only in `value' evaluates
to true.

Example:

BreakIf ((CurrentBarIndex() > 50) and (open > close[1]));

This function is only active while the Express code is executed via the Express
editor. Otherwise, the function is ignored.

Definition: float BreakIfDrawingTool()

Meaning: Same as Break(), but the program is halted only if at the current bar a
drawing tool, such as a rectangle, starts or ends in the MasterChart.

Example:
BreakIfDrawintTool();

This function is only active while the Express code is executed via the Express
editor. Otherwise, the function is ignored.

Definition: void CalculateAtEveryTick (bool value)

Meaning: Call CalculateAtEveryTick(false) to disable the execution of an Ex-
press script for each incoming tick. The script will then be executed only at the
end of a period. This helps tremendously to speed up very time consuming or
poorly programmed Express sentimentors.

Example:

if IsFirstBar() then CalculateAtEveryTick(false);

Definition: float Ceiling (float value)

Meaning: Returns the smallest integer greater than `value’.

Example:

Ceiling (2.95) returns 3

Definition: float Cosine (float value)

Meaning: Returns the cosine of `value’ degrees.

Example:

Cosine (45) returns 0.7071

Definition: void CreateFile(string filename, string text)

 NanoTrader-Express

 NanoTrader-Express 58

Meaning: Creates a file with the given text as content. If the file already exists,
the parameter `text' will be appended. The filename is defined by the parameter
`filename'.

Please see function PlaySound() for a description of when a file is created. The
same principles apply as for playing sounds.

Example:

if (close > high[1]) and (close > high[2]) then

 CreateFile("C:\nano-actions.txt", TimeToString(datetime,

 "%Y-%m-%d %H:%M:%S") + " New peak at symbol " +

 SymbolName());

Definition: bool CrossesAbove (series curve, series trigger)

Meaning: Returns true (if curve[1] <= trigger [1]) and (curve > trigger), false oth-
erwise

Example:

if CrossesAbove (mySeries, close) then sentiment = 100;

Definition: bool CrossesAboveThreshold (series curve, float threshold)

Meaning: Returns true (if curve[1] <= threshold) and (curve > threshold), false
otherwise

Example:

if CrosseAboveThreshold (mySeries, 70) then

 sentiment = 100;

Definition: bool CrossesBelow (series curve, series trigger)

Meaning: Returns true (if curve[1] >= trigger[1]) and (curve < trigger), false oth-
erwise

Example:

if CrossesBelow (mySeries, close) then sentiment = 0;

Definition: bool CrossesBelowThreshold (series curve, float threshold)

Meaning: Returns true (if curve[1] >= threshold]) and (curve < trigger), false
otherwise

Example:

if CrossesBelowThreshold (mySeries, 30) then sentiment = 0;

Definition: int CurrentBarIndex ()

 NanoTrader-Express

 NanoTrader-Express 59

Meaning: The index of the currently processed bar. The first bar has the index
0.

Example:

highDiff = CurrentBarIndex() – IndexOfHighest (close, 10);

Definition: float DateToNumeric (time value)

Meaning: Converts a date into a numeric value. The date 2013-04-23 is con-
verted into 130423.

This function is ideal whenever the computation should rely on the date.

Example:

sentiment = preCalculatedSentiment * (1 –

 (DateToNumeric(dateopen)-130000)/1231);

Definition: int Duration (time start, time end)

Meaning: The duration in seconds from start to end.

Example:

d = Duration (timeOpen, time);

d = Duration (dateTime[20], dateTime);

Note: The caller needs to make sure that both parameters are of identical type,
i.e., Duration (dateOpen, time) will give an invalid result as "dateOpen" only
contains the day-component whereas "time" only the time component.

Definition: int DayOfWeek (time time)

Meaning: The index of the day in the week from `time’, where Monday = 1,
Tuesday = 2, ...

Example:

//no entries on Fridays:

if DayOfWeek(date) = 5 then sentiment = 50;

Definition: float EntryPrice ()

This function is only available for Stop sentimentors.

Meaning: The entry price for the current position. If the Stop is used in a Trade-
Guard or as a Tactic then the return value is the price that was traded at activa-
tion time of the TradeGuard or Tactic. If the TradeGuard was already active
while the position was opened then the price equals the fill price.

See also EntryPriceOriginal().

Example:

 NanoTrader-Express

 NanoTrader-Express 60

SetStopPrice(EntryPrice() – 5 * TickSize());

Definition: float EntryPriceOriginal ()

This function is only available for Stop sentimentors.

Meaning: The actual opening price of the account position.

See also EntryPrice ().

Example:

SetStopPrice(EntryPriceOriginal() + TickSize());

Definition: float Exp (float value)

Meaning: The exp() function applied on `value’.

Example:

val = exp(1.254);

Definition: int FinalBarIndex ()

Meaning: Returns the index of the final period in the evaluation range.

Example:

if IsFirstBar() then

begin

 ExpMovingAverage(close, ema1, 5);

 ExpMovingAverage(close, ema2, 33);

 for i = 0 to FinalBarIndex()

 helper[-i] = ema1[-i] – ema2[-i];

end

Definition: ForceFlat ()

This function is only available for Stop sentimentors.

Meaning: Forces the whole position to be completed. Thus, if multiple stops are
used, calling ForceFlat() will not only close the portion of the current position be-
ing protected by the calling Stop sentimentor, but the whole position.

Example:

if (BarsSinceEntry() > 10)

 and (close < EntryPrice() + 50*TickSize()) then

 ForceFlat();

 NanoTrader-Express

 NanoTrader-Express 61

Definition: ExpMovingAverage (series source, series target, int span)

Meaning: Computes the span-bar exponential moving average of `source’ and
writes the result into `target’. This function should only be used in conjunction
with IsFirstBar() or IsFinalBar().

Example:

if IsFirstBar () then

 ExpMovingAverage (close, mySeries, $span);

if IsFinalBar () then

 ExpMovingAverage (mySeries, mySeries, $span);

Definition: float Floor (float value)

Meaning: Returns the largest integer smaller than `value’.

Example:

Floor (2.95) returns 2

Definition: string GetApplicationLanguage ()

Meaning: Returns the configured language of NanoTrader. Possible return val-
ues are DEU, ENG, FRA, HUN, ITA, NLD and POL.

Example:

if GetApplicationLanguage() = "ENG" then

 MessageBox("This message is in English.");

Definition: int GetArraySize (array arr)

Meaning: Returns the number of elements of array `arr’.

Example:

sum = 0;

for i = 0 to GetArraySize(arr) – 1

begin

 sum = sum + arr[i];

end

Definition: int GetDefaultOrderSize ()

Meaning: Returns the order size for the instrument the Express script is running
on. This function is available in experts mode only (see SetExpertsMode()).

This function is ideal whenever the order size needs to increase/decrease in re-
lation to the value of the sentiment.

 NanoTrader-Express

 NanoTrader-Express 62

Example:

if (sentiment = 0) OR (sentiment = 100) then

 SetDefaultOrderSize(GetDefaultOrderSize()+1);

else

 SetDefaultOrderSize(1);

Definition: time GetExpiration ()

Meaning: Returns the expiration date and time of the symbol the Express sen-
timentor is attached to. If the symbol has no expiration, the function results Jan-
uary 1st 1970 at 0:00.

Example:

if (date >= GetExpiration()) then

 sentiment = senti_flat;

Definition: string GetPriceFormat ()

Meaning: Returns the internal fomat for plotting the price in the MasterChart’s y-
axis.

Example:

SetYscaleFormat (GetPriceFormat());

Display the indicator’s y-axis in the same format as the MasterChart is dis-
played.

Definition: float GetSpreadSize ()

Meaning: Returns the current spread of the symbol the Express sentimentor is
attached to.

Example:

ask = close + GetSpreadSize();

Definition: float Highest (series series, int span)

Meaning: Returns the highest value in series for the elements series[0], ... se-
ries[span – 1]

Example:

tenBarHigh = Highest (close, 10);

 NanoTrader-Express

 NanoTrader-Express 63

Definition: void Highlight (string type, string color)

 void HighlightRGB (string type, int red, int green, int blue)

 void HighlightAt (int offset, string type, string color)

 void HighlightRGBAt (int offset, string type, int red,int green,int blue)

Meaning: Hightlights the current bar with respect to the chosen `type’ in the
specified `color’.

The following types are supported: (See screenshot)

"ellipse", "upTriangle", "downTriangle", "slot", "bottomLine", "topLine", as well as
"textAbove", "textBelow".

The text to be displayed with "textAbove" and "textBelow" is appended to the
type separated by a colon, e.g.:

Highlight("textAbove:This text appears\nabove the period",

"black");

A line break can be enforced by using the charater sequence \n. Lines are not

wrapped automatically.

See function "plot" for a listing of the supported color names.

See Section More on Colors to learn about how to specify colors and the opaci-
ties.

Multiple highlights can be overlaid.

Example:

if (volume > 500) then Highlight("ellipse", "green");

 NanoTrader-Express

 NanoTrader-Express 64

//no intra bar highlighting:

if (volume > 500) and IsBarCompleted() then

 Highlight("ellipse", "green,25"); //opacity 25%

The "At"-versions allow to highlight the current bar, similar to indexing price da-
ta. Ex. use HighlightAt(2, "upTriangle", "blue") to set a highlight two periods be-
fore the current bar. This makes it easy to highlight price patterns that stretch
out over multiple periods for example.

Definition: IndexOfHighest (series series, int span)

Meaning: Returns the index of the highest value for the elements series[0], ...
series[span – 1]

Example:

highDiff = CurrentBarIndex() – IndexOfHighest (close, 10);

Definition: IndexOfLowest (series series, int span)

Meaning: : Returns the index of the lowest value for the elements series[0], ...
series[span – 1]

Example:

lowDiff = CurrentBarIndex() – IndexOfLowest (close, 10);

Definition: bool IsBarCompleted()

Meaning: Returns true if the period currently worked on is completed.
Example:

if IsBarCompleted() and (volume > 1000) then

 PlaySound("gong");

Definition: bool IsFinalBar()

Meaning: Returns true if currently the final bar is processed.

Example:

if IsFinalBar () then MovingAverage (mySeries, mySeries,

$span);

Definition: bool IsFirstBar()

Meaning: Returns true if currently the first bar is processed.

Example:

if IsFirstBar () then MovingAverage (close, mySeries,

$span);

 NanoTrader-Express

 NanoTrader-Express 65

Definition: bool IsIntradayEntry()

This function is only available for Stop sentimentors.

Meaning: Returns true in case the position has just been opened in the cur-

rent, not yet closed period. Sometimes it is necessary to use a different scheme
for calculating the stop price for the initial period, e.g., based only on the entry
price. In case the position is not closed within this initial period, the stop price
for the next period to come will be calculated again.

Example:

if IsIntradayEntry () then SetStopPrice(EntryPrice() –

0.05);

Definition: bool IsNewDay()

Meaning: Returns true in case the the current bar is the first bar of a new day

of if it is the very first bar of the available data.

Example:

if IsNewDay () then Highlight("slot", "blue");

Definition: bool IsNonZero(float value)

Meaning: Returns true if `value’ >= 0.001. Never test with "= 0", because due to
rounding errors this condition is very rarely met.

Example:

if IsNonZero (a * b) then val = sum / (a * b);

Definition: bool IsZero(float value)

Meaning: Returns true if `value’ < 0.001. Never test with "= 0", because due to
rounding errors this condition is very rarely met.

Example:

if Not IsZero (a * b) then val = sum / (a * b);

Definition: float Log (float value)

Meaning: Returns the natural logarithm of `value’ or void if `value’ <= 0.

Example:

Log (1000) returns 6.9078

 NanoTrader-Express

 NanoTrader-Express 66

Definition: float Lowest (series series, int span)

Meaning: Returns the lowest value in series for the elements series[0], ... se-
ries[span – 1]

Example:

tenBarLow = Lowest (close, 10);

Definition: int MarketPosition ()

This function is only available for Stop sentimentors.

Meaning: Returns the direction of the current position:

1 = long

0 = flat

-1 = short

Example:

if MarketPosition() = 1 then SetStopPrice (low – 0.01);

Definition: int MarketPositionSize ()

This function is only available for Stop sentimentors.

Meaning: Returns the volume size of the current position:

> 0 = long

0 = flat

< 0 = short

Stops containing MarketPositionSize() are ignored in backtesting.

Example:

if MarketPositionSize() > 3 then

 SetStopPrice (low – 0.03);

else

 SetStopPrice (low – 0.01);

Definition: float Max (float value1, float value2)

Meaning: Returns the maximum value of `value1’ and `value2’

Example:

Max (3, 7.5) returns 7.5

 NanoTrader-Express

 NanoTrader-Express 67

Definition: float MaxPriceEntryBar ()

This function is only available for Stop sentimentors.

Meaning: For Stops with intraperiod updates (see SetIntraPeriodUpdate()).
Returns the highest price of the opening period of a trade that was achieved af-
ter the position was opened.

Example:

if (MarketPosition() = 1) and IsIntradayEntry() then

 SetStopPrice (MaxPriceEntryBar() - 5 * TickSize();

Definition: float MinPriceEntryBar ()

This function is only available for Stop sentimentors.

Meaning: For Stops with intraperiod updates (see SetIntraPeriodUpdate()).

Returns the lowest price of the opening period of a trade that was achieved af-
ter the position was opened.

Example:

if (MarketPosition() = -1) and IsIntradayEntry() then

 SetStopPrice (MinPriceEntryBar() + 5 * TickSize();

Definition: void MessageBox(string message)

Meaning: Displays `message’ in a popup window.

Please see function PlaySound() for a description of when a message is dis-
played. The same principles apply as for playing sounds.

Example:

if (close > high[1]) and (close > high[2]) then

 MessageBox("New peak at symbol " + SymbolName());

Definition: float Min (float value1, float value2)

Meaning: : Returns the minimum value of `value1’ and `value2’

Example:

Min (3, 7.5) returns 3

 NanoTrader-Express

 NanoTrader-Express 68

Definition: MovingAverage (series source, series target, int span)

Meaning: Computes the span-bar MovingAverage of `source’ and writes the re-
sult into `target’. This function should only be used in conjunction with IsFirst-
Bar() or IsFinalBar().

Example:

if IsFirstBar () then

 MovingAverage (close, mySeries, $span);

if IsFinalBar () then

 MovingAverage (mySeries, mySeries, $span);

Definition: NoDrawingOHLCinMC ()

Meaning: Disables the drawing of the data series open, high, low and close
(e.g. bars, renkos, candles) in the MasterChart. This function is available in ex-
perts mode only (see SetExpertsMode()).

Example:

if IsFirstBar() then NoDrawingOHLCinMC();

Definition: NormalCDF (float value)

Meaning: Returns the value of the density function of the standard normal dis-
tribution at value `value’.

Example:

cdf = NormalCDF(0.2);

Definition: NormalPDF (float value)

Meaning: Returns the value of the standard normal distribution at value `value’.

Example:

cdf = NormalPDF(0.2);

Definition: time NumericToDate (float value)

Meaning: Converts `value’ into a time value whereby `value’ is interpreted as
YYMMDD, e.g., 130423 is converted into the time 2013-04-23.

If the day-part of `value’ is larger than the number of days in the specified month
it is set to the last day of the month.

If the month-part of ‘value’ is larger than 12 it is set to 12.

The year-part of ‘value’ cannot be larger than 99.

 NanoTrader-Express

 NanoTrader-Express 69

This function is ideal whenever the computation should rely on a date that
needs to be adjustable through the DesignerBar and/or the optimizer.

Example:

 if (date >= NumericToDate($blockStart))

 and (date <= NumericToDate($blockEnd)) then

 sentiment = senti_block;

Definition: string NumericToString (float value, string format)

Meaning: Formats `value’ according to format `format’ and returns the result as
a string.

`Format’ supports all formats as used for the C-function "printf()". The most im-
portant formats are:

"%f" decimal floating point

"%6.2f" rounds to two decimals

"%g" discards trailing zeroes

"%e" scientific notation

In case format is the empty string the function uses the "%g" format.

For formatting a price, see function PriceToString().

Example:

ShowTip(NumericToString(val, "%6.4f");

Definition: time NumericToTime (float value)

Meaning: Converts `value’ into a time value whereby `value’ is interpreted as
HHMM, e.g., 1545 is converted into the time 15:45.

If the hour-part of `value’ is larger than 23 it is set to 23.

If the minute-part ‘ value’ is larger than 59 it is set to 59.

This function is ideal whenever the computation should rely on a time that
needs to be adjustable through the DesignerBar and/or the optimizer.

Example:

 if (time >= NumericToTime($blockStart))

 and (time <= NumericToTime($blockEnd)) then

 sentiment = senti_block;

 NanoTrader-Express

 NanoTrader-Express 70

Definition: void PlaySound(string sound)

Meaning: Plays the sound file denoted by `sound’. `sound’ may be a complete
path name to the .wav file to be played or it may be the so-called file title of a
.wav file residing in the subdirectory Wav of the installation directory.

E.g. if that directory contained a file named "ringin.wav" then the call-
PlaySound("ringin") would refer to that file.

A sound is only played once and only if it occurred by receiving live data.

Note that with every incoming tick the Express program is executed, hence for
the current period the sound will by default be played as soon as the function
PlaySound() is called and will not wait until the end of the period.

If a sound should only be played at the end of a period this can be achieved as
follows:

if IsBarCompleted () and soundCondtion then

 PlaySound("gong");

Note that per period only that sound is played that was initiated as the first
sound.

If `sound’ cannot be resolved to a valid wav-file a beep is played.

Example:

if volume > 300 then

 PlaySound("gong"); //intra bar notification of a high

volume period

if IsBarCompleted () and (close > high[1]) then

 PlaySound ("corkpop"); //end of bar notification of a

 //period’s close exceeding

 //the previous period’s high

Definition: void Plot (series curve, string color, int penWidth)
 void Plot (series curve, int red, int green, int blue, int penWidth)

Meaning: Plots the series `curve’ using in the specified color and pen width.

Example:

Plot (close, "green", 2);

Plot (close, 128, 128, 128, 1); //grey

Definition: void PlotBand (series curve1, string color1, int penWidth1,
 series curve2, string color2, int penWidth2, string fillColor)

Meaning: Plots the series `curve1’ and `curve2’ and fills the interior with color
`fillColor’. An almost infinite number of colors can be selected using the RGB
color scheme.

 NanoTrader-Express

 NanoTrader-Express 71

Example:

PlotBand(upper, "green", 2, lower, "red", 2, "lightgreen");

PlotBand(upper, 150, 0, 0, 2, lower, 0, 0, 0, 2, 128, 128,

 128);

Definition: PlotBars (series open, series close, series high, series low)

 PlotBars (series open, series close, series high, series low,

 string colorBull, string colorBear)

 PlotBars (series open, series close, series high, series low,

 series colors)

Meaning: Plots a bar chart using the specified series. If no colors are specified,
the ColorManager settings for bullish and bearish bars will be used. An almost
infinite number of colors can be selected using the RGB color scheme.

Example:

PlotBars (myOpen, myClose, high, low);

PlotBars (myOpen, myClose, high, low, "lightyellow",

 "lightblue");

PlotBars (myOpen, myClose, high, low, 150, 0, 0, 128, 128,

 128);

PlotBars (myOpen, myClose, high, low, myColors);

Definition: PlotCandles (series open, series close, series high, series low)

 PlotCandles (series open, series close, series high, series low,

 string colorBull, string colorBear)

 PlotCandles (series open, series close, series high, series low,

 series colors)

Meaning: Plots a candle stick chart using the specified series. If no colors are
specified, the ColorManager settings for bullish and bearish candles will be
used. An almost infinite number of colors can be selected using the RGB color
scheme.

Example:

PlotCandles (myOpen, myClose, high, low);

PlotCandles (myOpen, myClose, high, low, "lightyellow",

 "lightblue");

PlotCandles (myOpen, myClose, high, low, 150, 0, 0, 128,

 128, 128);

PlotCandles (myOpen, myClose, high, low, myColors);

 NanoTrader-Express

 NanoTrader-Express 72

Definition: void PlotCrossingLines (series curve1, string color1, int penWidth1,
 series curve2, string color2, int penWidth2, string fillColor1,

 string fillColor2)

Meaning: Plots the series `curve1’ and `curve2’ and fills the interior with color
`fillColor1’ when `curve1’ is above `curve2’. Otherwise the interior is filled with
color `fillColor2’. An almost infinite number of colors can be selected using the
RGB color scheme.

Example:

PlotCrossingLines(upper, "green", 2, lower, "red", 2,

 "lightgreen", "lightred");

PlotCrossingLines(upper, 150, 0, 0, 2, lower, 0, 0, 0, 2,

 128, 128, 128, 200, 200, 200);

Definition: void PlotLine (float value, string color, int penWidth)

Meaning: Plots a horizontal line at level `value’ using the specified color and
pen width..

Example:

PlotLine ($threshold, "red", 2);

PlotLine (100, 150, 0, 0, 1); //dark red

Definition: float PointValue ()

Meaning: Returns the point vlaue of the symbol the Express sentimentor is at-
tached to.

Example:

barValue = (high – low) * PointValue();

Definition: float Power (float value, float exponent)

Meaning: Returns `value’ raised to the power `exponent’.

Example:

Power (3, 3) returns 27

Definition: float PrevDayHigh/Low/Open/Close/Vol ()

Meaning: Returns the High/Low/Open/Close/Vol of the previous day or void in

case the data is not available

Example:

yesterdayMedian = (PrevDayHigh() + PrevDayLow() +

PrevDayClose()) / 3

 NanoTrader-Express

 NanoTrader-Express 73

Definition: string PriceToString (float value)

Meaning: Rounds `value’ to the nearest price with respect to the defined ticksize
and precision of the analyzed symbol and converts it into a string.

Takes fractional notations into account.

Example:

ShowTip("TriggerPrice = " + PriceToString(high[1] +

2*TickSize()));

Definition: int RGB (int red, int, green, int blue)

Meaning: Converts the given red, green and blue portions of a color into an in-
teger specifying the same color. This function is helpful when assigning colors
to a series as parameter for PlotBars() and PlotCandles().

Example:

myColors = RGB (255, 255, 160);

Definition: float Round (float value, int precision)

Meaning: Returns `value’ rounded to `precision’ decimals.

Example:

Round (2.428, 2) returns 2.43

Definition: float RoundMultiple (float value, float multiple)

Meaning: Returns `value’ rounded to the nearest multiple of `multiple’.

Example:

RoundMultiple ((high + low) / 2, TickSize());

Definition: RSI (series source, series target, int span)

Meaning: Computes the span-bar RSI of `source’ and writes the result into `tar-
get’. This function should only be used in conjunction with IsFirstBar() or IsFi-
nalBar().

Example:

if IsFirstBar () then RSI (close, mySeries, $span);

if IsFinalBar () then RSI (mySeries, mySeries, $span);

Definition: void Screenshot(string filename)

Meaning: Creates a screenshot of the MasterChart and saves it as png file in
‘filename’. If ‘filename’ does not contain a full path then it is saved in the
Screenshots directory.

 NanoTrader-Express

 NanoTrader-Express 74

The screenshot is done exactly as shown on the screen and using the same
dimensions.

It is recommend to use the function ScreenshotEx() instead as it offers more
features.

Please see function PlaySound() for a description of when screenshot is done.
The same principles apply as for playing sounds.

Example:

If IsFinalBar() then

 Screenshot("epxress.png");

Definition: void ScreenshotEx(string filename, int style, int width, int height, int
periodsOrDays)

Meaning: Creates a screenshot of the MasterChart or Equity chart and saves it
as png file in ‘filename’. If ‘filename’ does not contain a full path then it is saved
in the Screenshots directory.

The ‘style’ determines the elements of the MasterChart or Equity chart to be
drawn and defines the default dimensions.

0 = exactly as shown on the screen
1 = less decoration, medium sized
2 = even less decoration, small
3 = show Equity, medium sized
4 = show Equity, small

Use ‘width’ and ‘height’ to define the dimension of the created image. Set to 0 to
use the default as defined by the style.

‘periodsOrDays’ defines the number of periods to be displayed, counting from
the last available period. If set to a value greater than 0 then it defines the total
number of periods to be shown. If set to 0 then it shows the starting point of the
current zoom in the MasterChart. If set to a negative number then it is interpret-
ed as full days, e.g., -2 means "show today and yesterday".

Please see function PlaySound() for a description of when a screenshot is
done. The same principles apply as for playing sounds.

Example:

If IsFinalBar() then

 ScreenshotEx("epxress.png", 0, 600, 400, -2);

Definition: void SendEmail(string subject, string message)

Meaning: Sends an email using the given subject and message to the email ad-
dress configured under Extras/Options.

Please see function PlaySound() for a description of when an email is sent. The
same principles apply as for playing sounds.

 NanoTrader-Express

 NanoTrader-Express 75

Example:

if (close > high[1]) and (close > high[2]) then

 SendEmail("NanoTrader-Notification",

 "New peak at symbol " + SymbolName());

Definition: void SetArraySize (array arr, int size)

Meaning: Sets the size of array `arr’ to `size’, i.e., the elements can be ac-
cessed using the indices 0 to (size – 1).

Example:

if IsFirstbar() then arr.SetSize(arr, $arrSize);

Definition: void SetArrayTo (array arr, float value)

Meaning: Sets all entries of the array `arr’ to `value’.

Example:

if IsFirstbar() then SetArrayTo(arr, 500);

Definition: void SetDefaultOrderSize (int value)

Meaning: Sets the order size to `value’ for the instrument the Express script is
running on. As the order size is changed per instrument the modification is ap-
plied to all accounts and studies containing the instrument. This function is
available in experts mode only (see SetExpertsMode()).

This function is ideal whenever the order size should rely on the value of the
sentiment.

Example:

if (sentiment = 0) OR (sentiment = 100) then

 SetDefaultOrderSize(2);

else

 SetDefaultOrderSize(1);

Definition: void SetExpertsMode ()

Meaning: Call SetExpertsMode() to enable the usage of functions in Express
which are requiring expert knowledge (e.g. SetDefaultOrderSize()). By setting
the experts mode you confirm that you know what you are doing. The responsi-
bility for any harm caused by expert functions is up to you.

Example:

if IsFirstBar() then SetExpertsMode();

 NanoTrader-Express

 NanoTrader-Express 76

Definition: void SetIntraPeriodUpdate ()

Meaning: Valid only for Stop sentimentors. The Stop calculation is set to be
done with each incoming tick. This is specifically useful when programming tac-
tics.

Stops containing SetIntraPeriodUpdate() are ignored in backtesting.

Note: For internal reasons the existence of the function call in the source code
suffices to activate the intra period computation – even if the corresponding
statement is never executed, i.e., even with code like

If false then SetIntraPeriodUpdate(); the intra period computation is activated.

Definition: void SetLongTrigger (float value)

Meaning: Defines the confirmation price or limit price for a long signal. To acti-
vate the evaluation of this price the Evaluator’s policy for "Sentiment Enter Sig-
nals" must be set to "Confirmation price next bar" or "Limit price next bar". In
case no sentimentor calls this routine the confirmation price is set to the
High/Low of the period generating the signal. The limit price will be set to the
close of the period generating the signal. In case many sentimentors call this
routine the strictest price is taken.

Example:

SetLongTrigger ((high + low) / 2);

Definition: void SetShortTrigger (float value)

Meaning: Analogously to SetLongTrigger().

Example:

SetShortTrigger ((high + low) / 2);

Definition: void SetStopPrice (float value)

This function is only available for Stop sentimentors.

Meaning: Defines the stop price for the current period in case the position has
just been entered or for the next period in case the position has been entered
before this period.

Note: In a given sentimentor there cannot be calls to both SetStopPrice() and
SetTargetPrice().

Example:

SetStopPrice (low[-1]);

 NanoTrader-Express

 NanoTrader-Express 77

Definition: void SetTargetPrice (float value)

This function is only available for Stop sentimentors.

Meaning: Defines the target price for the current period in case the position has
just been entered or for the next period in case the position has been entered
before this period.

Note: In a given sentimentor there cannot be calls to both SetStopPrice() and
SetTargetPrice().

Example:

SetTargetPrice (high[-1]);

Definition: void SetYscaleFormat (string format)

Meaning: Defines the format of the y-axis in printf like format.

Example:

SetYscaleFormat("%.5d"); //use 5 decimal places

SetYscaleFormat("%g"); //use the most compact display

Definition: void ShowTip (string message)

Meaning: Anchors `message’ to the current bar. The message is displayed in a
popup window when the cursor is above the bar. To indicate a new line use the
character sequence \n.

Example:

if CrossesAbove (mySeries, 70) then

 ShowTip ("Entered upper zone!\nWait for confirmation.");

Definition: float Sign (float value)

Meaning: Returns the sign of value.

Example:

Sign (-3) return –1; Sign (5) returns 1; Sign (0) returns 0

Definition: float Sine (float value)

Meaning: Returns the sine of `value’ degrees.

Example:

Sine (70) returns 0.9397

 NanoTrader-Express

 NanoTrader-Express 78

Definition: float SquareRoot (float value)

Meaning: Returns the square root of value or void if `value’ < 0.

Example:

SquareRoot (4) returns 2

Definition: void StdDev (series source, series target, int span)

Meaning: Computes the standard deviation of the values source, source [1], ...,
source[span-1] saves the result in target.

This function should only be used in conjunction with IsFirstBar().

Example:

StdDev (close, myseries, 10);

Definition: float Sum (series series, int span)

Meaning: : Returns the sum of the elements series[0], ... series[span – 1].

Returns void in case one or more required elements are void.

Example:

amount = Sum (mySeries, $span);

Definition: void Swing (series series, input spanLeft, input spanRight)

Meaning: Standard interpretation scheme where the sentiments are computed
based on swings in series

Example:

interpretation Swings (mySeries);

Definition: string SymbolName()

Meaning: Returns the name of the symbol this Express script is working on.

Example:

if (close > high[1]) and (close > high[2]) then

 MessageBox("New peak at symbol " + SymbolName());

Definition: float Tangent (float value)

Meaning: Returns the tangent of `value’ degrees.

Example:

Tangent (70) returns 2.7475.

 NanoTrader-Express

 NanoTrader-Express 79

Definition: float TickSize ()

Meaning: Returns the ticksize of the symbol the Express sentimentor is at-
tached to.

Example:

trigger = high[1] + 3 * TickSize();

Definition: float TickValue ()

Meaning: Returns the tick vlaue of the symbol the Express sentimentor is at-
tached to.

Example:

profit = $nbTicks * TickValue();

Definition: float TimeToNumeric (time value)

Meaning: Converts a time into a numeric value. The time 15:45 is converted into
1545.

This function is ideal whenever the computation should rely on the time.

Example:

sentiment = preCalculatedSentiment * (1 -

TimeToNumeric(timeopen)/2400);

Definition: string TimeToString (time timeVal, string format)

Meaning: Format `timeVal’ according to `format’ into a string

Format supports the formatting of the C-function strftime(), i.e.:
%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name %B Full month name
%c Date and time representation appropriate for locale
%d Day of month as decimal number (01 – 31)
%H Hour in 24-hour format (00 – 23)
%I Hour in 12-hour format (01 – 12)
%j Day of year as decimal number (001 – 366)
%m Month as decimal number (01 – 12)
%M Minute as decimal number (00 – 59)
%p Current locale's A.M./P.M. indicator for 12-hour clock
%S Second as decimal number (00 – 59)
%U Week of year as decimal number, with Sunday as first day of week

(00 – 53)
%w Weekday as decimal number (0 – 6; Sunday is 0)
%W Week of year as decimal number, with Monday as first day of week

 NanoTrader-Express

 NanoTrader-Express 80

(00 – 53)
%x Date representation for current locale
%X Time representation for current locale
%y Year without century, as decimal number (00 – 99)
%Y Year with century, as decimal number
%z, %Z Time-zone name or abbreviation; no characters if time zone is unknown
%% Percent sign

If `format’ is the empty string the time is formatted to display Date and Time.

Example:

ShowTip(TimeToString(time, "%H:%M:%S"));

Definition: TriggerLine (series curve, series trigger)

Meaning Standard interpretation scheme where the sentiments are computed
based on the crossings of `curve’ and `series’.

Example:

interpretation TriggerLine (close, mySeries);

Definition: void TwoThresholds (series series, input upThreshold, input down-
Trheshold)

Meaning: Standard interpretation scheme where the sentiments are computed
based on zones defined by two thresholds.

Example:

interpretation TwoThresholds (mySeries, $upperZone,

$lowerZone);

Definition: void Unaggregate (series source, series target)

Meaning: If the series `source’ was imported from another sentimentor which
potentially was aggregated then use Unaggregate() to map it back to the Mas-
terChart aggregation.

Example:

series maAgg(MovingAverage.main);

//the MovingAverage sentimentor is aggregated in the study

series ma;

...

if IsFirstBar() then

 Unaggregate (maAgg, ma);

 NanoTrader-Express

 NanoTrader-Express 81

Definition: void VarsToString (string vars)

Meaning: Returns the current values of the variables whose names are provid-
ed as a comma-separated list in `vars'.

If 'vars' is empty, then the values of all used variables are returned, where
"used" means that the variables are not only defined, but actually referred to.

The $-sign used to denote input parameters is optional.

For a series, the value of the current period is returned.

Array variables are ignored.

Examples:

ShowTip(VarsToString("close,ma,$input"));

ShowTip(VarsToString("close,ma,input"));

ShowTip(VarsToString(""));

Definition: WeightedMovingAverage (series source, series target, int span)

Meaning: Computes the span-bar Weighted MovingAverage of `source’ and
writes the result into `target’. This function should only be used in conjunction
with IsFirstBar() or IsFinalBar().

Example:

if IsFirstBar () then WeightedMovingAverage (close,

mySeries, $span);

if IsFinalBar () then WeightedMovingAverage (mySeries,

mySeries, $span);

